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Abstract
Aim: Population density is a key parameter in ecology and conservation, and estimates 
of population density are required for a wide variety of applications in fundamental 
and applied ecology. Yet, in terrestrial mammals these data are available for only a 
minority of species, and their availability is taxonomically and geographically biased. 
Here, we provide the most plausible predictions of average population density, their 
natural variability and statistical uncertainty for 4,925 terrestrial mammal species.
Location: Global.
Time period: 1970–2021.
Major taxa studied: Terrestrial mammals.
Methods: We fitted an additive mixed-effect model accounting for spatial and phylo-
genetic autocorrelation on a dataset including 5,412 average population density es-
timates for 737 species. Average density was modelled as a function of body mass, 
diet, locomotor habits and environmental conditions. We validated the model using 
spatial and taxonomic block cross-validation and used the estimated error to quantify 
the uncertainty around statistical predictions of population density for 4,925 mammal 
species.
Results: Small body size, fossorial behaviour and herbivorous diets were associated 
with the highest population densities, whereas large size, aerial behaviour and car-
nivorous diets were related to the lowest densities. Species in non-seasonal environ-
ments yielded higher densities than species in environments with high precipitation 
seasonality. Empirical estimates of population density vary by about four times on 
average within the same species, and statistically independent predictions for the 
majority of species deviate by about five times from observed values, indicating that 
prediction errors are similar to the natural variability in population densities.
Main conclusions: Our predictions and uncertainty estimates of average population 
densities open up a number of applications in macroecology and conservation bio-
geography, including biomass estimation, setting population targets in conservation 
assessments and planning, and supporting Red List assessments. The methodology 
can be replicated easily for other taxonomic groups with a representative sample of 
georeferenced density estimates.

www.wileyonlinelibrary.com/journal/geb
mailto:﻿
https://orcid.org/0000-0002-5418-3688
https://orcid.org/0000-0002-6432-1837
https://orcid.org/0000-0002-9835-1794
https://orcid.org/0000-0002-7037-680X
http://creativecommons.org/licenses/by/4.0/
mailto:luca.santini.eco@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgeb.13476&domain=pdf&date_stamp=2022-03-08


    |  979SANTINI et al.

1  |  INTRODUC TION

Population density (the number of individuals per unit area) in ter-
restrial mammals varies greatly, by about two orders of magnitude 
within species and by about eight orders across species, ranging from 
c. .0001 individuals/km2 in large carnivores to >50,000 individuals/
km2 in small rodents (Santini et al., 2018). Understanding the drivers 
of this variation has been a key objective of macroecology (Brown & 
Maurer, 1989), and gaining predictive ability on this key population 
parameter will find many applications in conservation science.

The variation of population density across mammal species 
is largely explained by their body mass and diet (Damuth,  1981; 
Silva et al., 1997), which relate to metabolism and energy demand 
(Damuth, 1987; Smith et al., 2003), and diet-related differences in as-
similation efficiency, resource availability and accessibility (Carbone 
& Gittleman,  2002; Jetz et  al.,  2004; Robinson & Redford,  1986; 
Silva et al., 1997). Wild mammal population densities also vary over 
space, within and across species, as a function of climate (Currie & 
Fritz, 1993; Santini, Isaac, Maiorano, et al., 2018), primary productiv-
ity (Pettorelli et al., 2009; Santini, Isaac, Maiorano, et al., 2018), prey 
abundance (Carbone & Gittleman, 2002; Hatton et al., 2015), habitat 
(Roseberry & Woolf, 1998; Šálek et al., 2014) and anthropogenic im-
pact (Benítez-López et al., 2019; Tucker et al., 2020). Although at a 
large scale the average density varies as a function of species traits 
and environmental factors (Santini, Isaac, Maiorano, et  al.,  2018), 
populations also exhibit variable densities within the same location 
over time, which can result from predator–prey and demographic 
cycles (Korpimäki & Krebs, 1996; Oli, 2003) and from environmen-
tal or demographic stochasticity (Gaillard et  al.,  1998; Shanker & 
Sukumar, 1999). It has been argued that the range of possible popu-
lation densities per species (termed “population scope”) is bounded 
between a minimum, determined by the species’ maximum home 
range size and travel distances, and a maximum, determined by pri-
mary productivity and resource availability (Stephens et al., 2019).

Population density has been a central focus of macroecolog-
ical investigation because it underlies species abundance distribu-
tions (Morlon et al., 2009), biomass estimation (Bar-On et al., 2018; 
Hatton et al., 2015), metabolic allometric scaling and resource dis-
tribution in ecosystems (Brown et al., 2004; Kooijman, 2009; Pagel 
et  al.,  1991; White et  al.,  2007), intensity of species interactions 
(Carbone & Gittleman, 2002; Hatton et al., 2015), and minimum area 
requirements and distribution ranges (Blackburn & Gaston, 2001). 
Population density also plays a key role in conservation because the 
reciprocal of density is considered one of the seven forms of rar-
ity that are directly relevant to species vulnerability to extinction 
(Rabinowitz, 1981; Sykes et al., 2020), and population size is one of 
the key parameters used to assess the conservation status of species 
(IUCN, 2017).

Although a fundamental parameter in ecology and conservation, 
density estimates are rare and sparse across space and time (Santini, 
Isaac, & Ficetola, 2018). This is because robust estimates of mamma-
lian population density can require long field seasons (from months 
to years) and can be highly expensive in terms of human resources 
(field assistants), logistics (travelling to the study area, obtaining per-
mits and visas, vaccinations, accommodation, etc.) and equipment 
(camera traps, genetic analyses, flights for aerial counts, etc.) (Barea-
Azcón et al., 2007; Liberg et al., 2012). Surveys may have to be con-
ducted in areas spanning from hundreds of square metres (e.g., mice 
or voles; Castañeda et al., 2018) to thousands of square kilometres 
(e.g., tigers; Tempa et al., 2019), depending on the species’ average 
density. Preferred sampling methods are species and habitat depen-
dent. For example, aerial counts are often used to estimate popula-
tion density over vast areas and for large animals, and are possible 
only in open habitats (savannas, grasslands or tundra; but for the use 
of thermal imaging in forests, see Spaan et al., 2019). Furthermore, 
population density estimates have a limited temporal validity for 
conservation management, because populations fluctuate over 
time. It becomes fundamental, therefore, to develop approaches to 
obtain preliminary estimates in a more efficient manner.

There have been multiple calls to move from a more “explanatory” 
to a more “predictive” ecology and conservation (Currie, 2019; Getz 
et al., 2018; Mouquet et al., 2015; Travers et al., 2019). Predictions 
allow us not only to test whether our understanding of natu-
ral mechanisms is solid and sufficient to explain what we observe 
(Currie, 2019), but also to inform conservation management directly 
and move to a more proactive conservation (Travers et  al.,  2019). 
Estimates of population size over vast areas can be vital for a num-
ber of conservation applications, such as assessments of the Red List 
status of species at risk of extinction (Santini et al., 2019; Yanqing 
et al., 2020), estimating the suitable size of protected areas to ensure 
species persistence (Clements et al., 2018; Santini et al., 2016) and 
applying population targets for conservation (Clements et al., 2011; 
Di Marco et al., 2016; Hilbers et al., 2017; Sanderson, 2006; Traill 
et al., 2010). Most large-scale conservation analyses consider only 
distribution data because of its broader accessibility, but given that 
abundance is unrelated to both geographical range size and proba-
bility of presence (Dallas & Hastings, 2018; Novosolov et al., 2017) 
and that population density changes substantially across taxonomic 
groups (Santini, Isaac, Maiorano, et al., 2018), ignoring density can 
introduce taxonomic biases in conservation assessments and plan-
ning (Di Marco et al., 2016; Santini et al., 2014).

Many studies have addressed the lack of data using published 
density estimates of the same or similar species (e.g., Sommer 
et  al.,  2002; Yanqing et  al.,  2020) or body mass–density allome-
tries (Visconti et  al.,  2016). Only a few well-studied species have 
sufficient data to develop species-specific predictive abundance 
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models (e.g., Sus scrofa, Lewis et al., 2017; Panthera onca, Jędrzejewski 
et al., 2018). A way to address limited data availability for most spe-
cies is to develop cross-species models that can predict the average 
expected population density by considering species traits and en-
vironmental conditions, together with a predictive interval that re-
flects our level of confidence in the predictions. The interval should 
encompass the range of plausible population density values owing 
to statistical uncertainty, but also varying degrees of competition, 
predation, resource availability, anthropogenic pressure and de-
mographic fluctuations that cannot be predicted by the model. A 
measure of uncertainty around average predictions is fundamental 
to interpret their applied value in different contexts. A first attempt 
was made by Santini, Isaac, Maiorano, et  al.  (2018), who explored 
several drivers of geographical variation in population density and 
demonstrated a good potential for large-scale predictions. However, 
Santini, Isaac, Maiorano, et al. (2018) tested the predictive ability of 
models using a random split-sample approach, ignoring spatial and 
phylogenetic autocorrelation in the data (Roberts et al., 2017; Yates 
et al., 2018). A robust validation of model transferability is needed 
to make a comprehensive assessment of model applicability to dif-
ferent poorly known taxa and undersampled areas. Finally, Santini, 
Isaac, Maiorano, et  al.  (2018) provided neither population density 
predictions nor uncertainty estimates.

Here, we provide predictions of the average population densities 
for 4925 extant terrestrial mammal species listed under the IUCN 
Red List and complement these with the range of possible density 
values, accounting for intraspecific variability and statistical uncer-
tainty. We capitalize on an updated version of the TetraDENSITY 
database, the most comprehensive collection of population density 
data in terrestrial vertebrates, with 18,297 estimates for 877 ter-
restrial mammal species in the most recent version of the database 
(Santini, Isaac, & Ficetola, 2018). We aim to provide the best possible 
density estimates for mammals based on the available data to date. 
Specifically, we predict species population density as a function of 
species body mass and diet, phylogeny, environmental variables and 
geographical distribution, and we assess the transferability of model 
predictions across mammal taxa and space. The empirical estimates 
and predictions for species, together with predictive models and all 
code necessary to replicate the analyses, are provided to the sci-
entific community for their application in macroecological, conser-
vation and community ecology studies. These estimates should be 
seen as empirically derived priors of animal densities to be used in 
further studies, not as estimates of real local density.

2  |  METHODS

2.1  |  Overview of the methods

In order to predict the average density of mammal species and assess 
the accuracy of predictions, we followed five main steps presented 
in the Supporting Information (Figure S1). First, we collected, filtered 
and aggregated density data (Section  2.2; Supporting Information 

Figure S1a). Second, we derived reference values for prediction er-
rors by estimating intraspecific variability in empirical population 
density estimates (Section 2.3; Supporting Information Figure S1b). 
Third, we modelled the average population density of species as 
a function of their body mass and diet, phylogeny, environmental 
variables and geographical distribution (Section  2.4; Supporting 
Information Figure S1c). Fourth, we validated statistical models with 
taxonomic and spatially independent samples to assess the trans-
ferability of model predictions across mammal taxa and space and 
estimated the average error made, depending on the degree of ex-
trapolation beyond fitted data (Section 2.5; Supporting Information 
Figure  S1d). Finally, we predicted average population densities of 
terrestrial mammal species and the range of plausible values around 
the predictions using the estimated prediction error (Section  2.6; 
Supporting Information Figure S1e).

2.2  |  Data collection

We extracted the population density estimates from an unpublished 
extended version of the TetraDENSITY database, which includes 
>35,000 density estimates for >3,000 species of terrestrial verte-
brates (Santini, Isaac, & Ficetola,  2018). We extracted data for all 
mammals reported in the database (n  =  18,297; 877 species), to-
gether with information on the sampling method used in each mam-
mal survey (Supporting Information Figure  S1a). We excluded (1) 
estimates for which the sampling method was not recorded, (2) esti-
mates referring to non-native species, (3) estimates obtained before 
1970, and (4) and estimates whose spatial coordinates were central 
to a wide region. Considering the widespread effect of humans on 
the environment and animal populations and the fact that c. 75% of 
the global terrestrial surface is modified by humans to some extent 
(Venter et al., 2016), an exclusion of non-natural population densi-
ties is not possible realistically. We retained estimates of species col-
lected throughout the year depending on their availability, in order 
to approximate annual species averages. However, to avoid retaining 
pseudo-replicates in the model (e.g., monthly or seasonal estimates, 
or different habitats within the same study area), we averaged all 
estimates of the same species collected in the same location (set 
of coordinates provided in the study) and using the same sampling 
method.

A number of factors can influence population density in mam-
mals; however, given the predictive goal of the paper, here we 
restricted the selection to variables that had complete data for 
most species and for which previous theoretical expectations 
and/or empirical exploration existed. Body mass and diet have 
been investigated widely as drivers of population density varia-
tion in mammals (Silva et al., 1997). In allometry studies focused 
on mammal density, species have typically been categorized into 
broad diet categories (e.g., herbivores, omnivores and carnivores; 
Currie & Fritz, 1993; Peters & Wassenberg, 1983; Santini, Isaac, 
Maiorano, et  al.,  2018), although other studies have shown that 
finer diet categories (e.g., insectivores, granivores and frugivores; 
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Robinson & Redford, 1986; Silva et al., 1997) show consistent dif-
ferences in the allometry between body mass and diet. However, 
because the classification of mammal species into clear-cut diet 
categories is non-trivial (Kissling et al., 2014; Wilman et al., 2014), 
we decided to use percentages of item consumption as continuous 
predictor variables. We extracted body mass and the percentage 
of seven dietary items for all species from the EltonTraits database 
(Wilman et al., 2014). We then used the percentage of carnivory 
(sum of fish, ectotherms, endotherms and unknown categories), 
insectivory, scavenging, nectarivory, frugivory, granivory and con-
sumption of other plant items (herbivory/folivory). Given that dif-
ferent locomotor habits involve different mortality rates (Healy 
et al., 2014; Shattuck & Williams, 2010) and imply foraging in two- 
or three-dimensional habitats (Carbone et al., 2007), we also in-
cluded locomotion as a predictor for population density using the 
following categories: terrestrial, fossorial, arboreal, semi-arboreal 
and aerial. We classified all mammal species into these catego-
ries, searching per family, genera or species, based on diverse 
sources, including the Mammalian Species series (https://www.
mamma​lsoci​ety.org/publi​catio​ns/mamma​lian-species), and Animal 
Diversity web (https://anima​ldive​rsity.org/) and the Handbook of 
Mammals of the World series (Wilson & Mittermeier, 2011).

Finally, we included two environmental variables that were 
important determinants of population density in previous stud-
ies on mammals: precipitation seasonality (coefficient of variation 
of monthly precipitation values) and net primary productivity ex-
pressed as MODIS Normalized Vegetation Difference Index (NDVI) 
(Pettorelli et al., 2009; Santini, Isaac, Maiorano, et al., 2018), which 
are proxies for annual resource variability and energy availability, 
respectively. Precipitation can itself be a resource, but it also de-
termines the availability of resources that can, in turn, influence 
demographic fluctuations (e.g., Lima & Jaksic,  1999; Madsen & 
Shine,  1999). Yearly resource fluctuations can increase mortality 
and limit seasonal carrying capacity, and have been shown to affect 
mammal densities negatively (Santini, Isaac, Maiorano, et al., 2018). 
In turn, primary productivity can show a positive relationship at the 
intraspecific level (Pettorelli et  al.,  2009), but has been shown to 
yield a nonlinear relationship across species globally (Santini, Isaac, 
Maiorano, et  al.,  2018). Precipitation seasonality was downloaded 
from WorldClim v.2.0 (Fick & Hijmans, 2017) and covers the period 
1970–2000, whereas NDVI was downloaded from the NASA Earth 
Science Data System program (https://lpdaa​csvc.cr.usgs.gov/) and 
averaged for all years available (1992–2015). Environmental variables 
were resampled at 1° resolution to accommodate the maximum un-
certainty of spatial coordinates in density estimates. Although the 
environmental data do not perfectly match the period considered 
for the density estimates (1970–2021), we considered them suffi-
ciently representative of the global variation of climate and primary 
productivity.

All data sources for the density estimates included in the dataset 
are listed in the Supporting Information (Appendix S1). The codes 
and datasets used to run the analyses are accessible at: https://doi.
org/10.6084/m9.figsh​are.19087​037.v2

2.3  |  Empirical estimates of intraspecific variability

For all mammal species listed in TetraDENSITY, we provide the av-
erage across all density estimates for each single species (n = 689), 
plus an estimate of intraspecific variability (Supporting Information 
Figure S1b). An estimate of intraspecific variability serves as a refer-
ence value for interpreting model predictive errors. In fact, even in 
an ideal model the predictive errors are expected to be high because 
predictions of average density are compared with empirical esti-
mates, which might not reflect the long-term local average density. 
Although averaging multiple empirical estimates per location can 
help to reduce this temporal noise, these estimates can still devi-
ate substantially from the local average density. Hence, comparing 
variability in empirical estimates with predictive error enhances the 
interpretability of the validation results.

We first estimated the mean and SD of empirical estimates per 
species, then used the ln-mean and ln-SD to draw 1,000 random 
values from a log-normal distribution. We summarized this distribu-
tion using the interquartile range (25–75%) and the 95% confidence 
interval (95% CI). Variability was estimated only for species with a 
minimum sample size, in order to encompass natural variability as 
accurately as possible. To assess the minimum number of estimates 
required to estimate intraspecific variability, we fitted a locally 
weighted smoother model (loess) between the log10-transformed 
sample size per species and the coefficient of variation (Supporting 
Information Figure  S2). Although the underlying data show large 
variation, the fitted model indicates that the coefficient of variation 
increases rapidly until an inflection point at a sample size of c. 30, 
above which the addition of further estimates increases the coeffi-
cient of variation at a lower rate (Supporting Information Figure S2). 
To avoid underestimating the coefficient of variation because of a 
small sample, and considering that a minority of species have larger 
samples, we set the minimum sample size at 30. Given that not all 
species had 30 or more density estimates, we used a hierarchical ap-
proach. For species with >30 estimates, we used the SD at the level 
of the species. For all other species, we estimated SD at the level of 
each species with >30 estimates within the same genus, family or 
order, and we calculated the pooled SD (Thalheimer & Cook, 2002) 
using the formula:

where n is the size of each sample, and k is the number of samples. This 
gives more weight to SDs based on larger samples, which gives more 
weight to SDs based on larger samples.

This hierarchical approach assumes that the intraspecific variability 
in population density is, in part, a biological property that depends, for 
example, on whether the species undergoes demographic cycles (e.g., 
rodents) or belongs to a trophic level that tends to have more variable 
densities. The estimated variability can also represent errors in empiri-
cal estimates, which can depend on the type and diversity of methods 
typically used to estimate the population density of a particular group 
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of species. In 124 cases, there were no species with sufficient sample 
within the same order (e.g., Pilosa and Peramelemorphia), hence we 
used the pooled SD across all species with >30 density estimates.

2.4  |  Model fitting

We used a generalized additive mixed-effect model (GAMM) to pre-
dict the population density of species with no empirical estimates 
(Supporting Information Figure S1c). Population density was log10-
transformed before model fitting. We included species as a random 
effect to control for pseudo-replication, and an additional random 
effect for the sampling method, encompassing broad categories 
of methods for estimating population density: censuses (“com-
plete” counts, which assume full detection of individuals), distance 
sampling, home range extrapolations, mark–recapture, N-mixture 
models, random encounter models, incomplete counts (e.g., strip 
transects) and trapping (removal methods, which indicate the mini-
mum number known to be alive) (Santini, Isaac, & Ficetola, 2018). As 
fixed effects, we included the species’ body mass, locomotion type 
and percentage of dietary items (hereafter, diet), in addition to pre-
cipitation seasonality and NDVI. Although the effect of environmen-
tal variables on population density predictions is likely to be relevant 
only in widely distributed species, it can help to explain taxonomic 
differences attributable to the geographical distribution of taxa, dis-
entangling the relative effects of traits and climate, hence improving 
model transferability.

To control for phylogenetic non-independence in the estimates, 
we extracted 1,000 random trees from the phylogeny in the study 
by Upham et  al.  (2019) and generated a majority-rule consensus 
tree, setting the frequency with which each clade or bipartition is 
encountered at .8. We then computed a principal components anal-
ysis on the phylogenetic distance matrix of the consensus tree and 
extracted the first two eigenvectors, which explained >98% of the 
total variance. We subsequently used these two eigenvectors as 
fixed factors in the model. Using the phylogenetic eigenvectors is 
preferable over phylogenetic least squares approaches for our pur-
pose, because it allows the use of the phylogeny for predictions, 
hence accounting for latent trait variables (i.e., traits not included 
in our model).

To control for spatial autocorrelation in the model residuals, we 
carried out a trend surface analysis using the tensor product inter-
action between the values of coordinates (northing and easting; 
Fletcher & Fortin, 2018). The GAMMs automatic shrinkage ensures 
that this trend surface does not distort estimates of the other pre-
dictors. Although other, arguably more sophisticated approaches 
are available to control for spatial autocorrelation (e.g., autoregres-
sive models), this approach has the advantage of accounting for ad-
ditional latent geographical factors that have not been taken into 
consideration while being computationally tractable given our large 
sample size.

Body mass was log10-transformed and dietary variables were 
logit-transformed after rescaling values from .1 to .99 before fitting 

the model, and all variables were scaled and centred before model 
selection. We allowed for nonlinearity using smooth terms for all 
continuous predictors (body mass, diet and phylogenetic eigen-
vectors), using four knots for body mass (which is known to show a 
cubic relationship with population density) (Santini, Isaac, Maiorano, 
et  al.,  2018; Silva & Downing,  1995) and three knots for all other 
predictors. The model was simplified as part of the fitting process by 
adding a parameter penalty that attempts to shrink smooth terms to-
wards zero, using the “select” argument of the “bam” function (Wood 
& Wood,  2015). Further, we fitted the model using the restricted 
maximum likelihood (REML) method. Based on this model, we as-
sessed the relative importance of each predictor by partitioning the 
variance explained across predictors. We estimated the squared 
correlation coefficient between the prediction of a model with one 
variable kept at its mean and the observed data. Each of these esti-
mates was substracted from the full variance explained, in order to 
estimate the relative importance of each variable. Relative impor-
tance was expressed as a percentage.

2.5  |  Model validation

The prediction interval for species included in the training dataset 
was obtained by using the SEs associated with the predictions. To 
estimate the prediction error for species not included in the training 
dataset or for novel geographical areas, we used several validation 
techniques that address taxonomic similarity and spatial autocorre-
lation in the estimates (Supporting Information Figure S1d). For the 
selected model, we estimated the root mean square error (RMSE) 
using a taxonomic and geographical block cross-validation proce-
dure (Roberts et al., 2017). The taxonomic blocking was applied to 
taxonomic orders, families and species. Then we ran two types of 
spatial-block cross-validations. First, we divided the globe into 5° × 
5° geographical blocks and then grouped the blocks into 10 folds. 
The size of the blocks ensures spatial independence of the data and 
avoids training the model on data that overlap spatially with those 
used for testing. We then fitted the model iteratively on all folds but 
one and validated on the left-out fold. Second, we divided the data-
set into biomes using the map from Olson et al. (2001) and iteratively 
fitted the model using data from all biomes but one and validated on 
the excluded biome. This spatial validation allowed us to estimate the 
average prediction error when extrapolating into novel geographi-
cal areas or biomes. For comparison, in the Supporting Information 
(Appendix S2) we present the same validation for a simple allomet-
ric model, and the model for mammals presented by Santini, Isaac, 
Maiorano, et al.  (2018). Finally, we compared the prediction errors 
(SEs of model predictions and the errors obtained by taxonomic- and 
spatial-block cross-validations) with the intraspecific variability ob-
served in the empirical estimates (Section 2.3). This comparison al-
lows one to interpret prediction errors using intraspecific variability 
as a reference value. A prediction error would be considered negligi-
ble if similar to the variability in population density observed within 
species, in the sense that a single empirical density would be equally 
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informative about the mean (but would lack an uncertainty estimate; 
see Section 2.6).

2.6  |  Model predictions and uncertainty estimation

We used the selected model fitted on the full dataset for the final 
predictions and estimated the 75% and 95% prediction intervals 
using the SE and RMSE values of the model obtained by validation 
(Supporting Information Figure S1e). Both SE and RMSE values are 
on a log10 scale because population density was log10-transformed 
before model fitting. We used the RMSE obtained by (1) order-
block cross-validation for species belonging to orders not present 
in the training dataset, (2) family-block cross-validation for species 
belonging to families not present in the training dataset but be-
longing to orders present in the training dataset, (3) species-block 
cross-validation for species not present in the training dataset but 
belonging to families present in the training dataset, and (4) the SEs 
of predictions for species present in the training dataset. To pre-
dict the average population density for each species, accounting for 
the environmental conditions experienced within their geographical 
area, we predicted the density for all 1° cells of the species’ IUCN 
geographical range polygon and calculated the average prediction 
(IUCN, 2019). The final prediction per species consisted of the aver-
age density prediction plus and minus the 75% and 95% predictive 
interval (Supporting Information Figure S1e). Finally, we estimated 
the mean bias estimate (MBE; average deviation between predicted 
and observed) using predictions based on the full dataset to assess 
possible prediction biases per taxonomic group or biome.

All analyses were conducted in R v.4.0.3 (R Core Team,  2020) 
using the packages “mgcv” (Wood & Wood, 2015), “raster” (Hijmans 
& van Etten, 2014), “ape” (Paradis & Schliep, 2019) and “doParallel” 
(Microsoft Corporation & Weston, 2020). Figures were made using 
“ggplot2” (Wickham et al., 2016).

3  |  RESULTS

3.1  |  Dataset

Our original dataset included 18,297 estimates for 877 species, 
belonging to 93 families and 22 orders. After data filtering and ag-
gregation by average to reduce pseudo-replicates, our final dataset 
included 5,412 estimates for 737 species (14.5% of all terrestrial 
mammal species), belonging to 90 families (68.1% of all terrestrial 
mammal families) and 21 orders (80.7% of all terrestrial mammal or-
ders), globally (Figure  1a,b). Most included species were primates, 
rodents, cetartiodactyls and carnivorans (Figure 1a,b). The included 
species covered the entire range of body mass of terrestrial mam-
mals but were biased towards large species (Figure 1c). We provide 
average population densities for 689 species based on empirical 
data (Supporting Information Table S1). Among these, the variabil-
ity was calculated at the level of species for 85 species, at the level 

of family for 177 species, at the level of order for 327 species and 
across all species for 100 species.

3.2  |  Drivers of population density

The selected model included all variables apart from nectarivory, 
frugivory and herbivory. The fixed effects explained 55.4% of vari-
ance (marginal R2), and the fixed and random effects together ex-
plained 76.7% of the variance (conditional R2). The most important 
contribution to the variance explained by fixed factors came from 
body mass (65.5%), followed by carnivory (22.5%); all other drivers 
contributed <3% (Figure 2). Density exhibited a negative asymptotic 
relationship with body mass, with a steeper relationship between 
c.  150  g and c.  150  kg and a shallower relationship beyond these 
values (Figure 3). Fossorial species exhibited the highest densities, 
aerial species the lowest, and arboreal, semi-arboreal and terrestrial 
species exhibited intermediate densities. Invertivory, granivory, car-
nivory and scavenging had a negative effect on density. NDVI had 
a nonlinear relationship with density, showing a slight decrease in 
average densities at higher productivity values. Precipitation sea-
sonality showed a negative effect on average density (Figure  3). 
Furthermore, the two phylogenetic components were positively 
related to average population density (Supporting Information 
Figure S3), whereas the spatial coordinates exhibited a complex non-
linear pattern (Supporting Information Figure S4).

3.3  |  Intraspecific variability and model 
prediction errors

Empirical density estimates within species varied 3.7 times on av-
erage (interquartile range =  2.9- to 5.0) from the median values 
(Figure  4). Predictions of average population density for species 
and geographical areas included in the dataset deviated by 1.4 
times on average (1.2–1.6) from the median values, those for novel 
areas c.  5.9 (5.6–6.9) and those for novel biomes c.  6.5 (4.9–8.6). 
Predictions for species not included in the dataset (but belonging to 
families included) deviated by 4.7 on average (2.6–10.1), for families 
not included in the dataset by 6.9 (4.2–11.3), and those for orders 
not included by 8.5 times (5.6–14.9; Figure 4). Overall, the predictive 
accuracy achieved was higher than in previous modelling attempts 
using the same dataset (Supporting Information Appendix S2).

3.4  |  Population density predictions

We provide model predictions of average population densities 
for 4,925 species (Figure  5; Supporting Information Table  S1). 
Predictive interval estimates were obtained using the SEs in 700 
species, by species-block cross-validation for 3,701, family-block 
cross-validation in 461 species and order-block cross-validation 
for 63 species (Supporting Information Figure  S1e). All empirical 
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averages, variability estimates and model predictions are provided 
as Supporting Information (Table S1).

We found that predicted densities varied across orders roughly 
following the range of body mass and diet included in each taxon 
(Figure 5). We predicted the highest densities for rodents (c. 10,000 
individuals/km2) and the lowest for carnivores (c.  .01 individuals/
km2). The magnitude of variation in predicted densities spanned 
one to five orders for some taxonomic groups (e.g., Cetartiodactyla, 
Carnivora and Rodentia). Our density prediction errors show no 
consistent pattern across different biomes (Supporting Information 
Figure S5). It does, however, show consistent biases for some taxo-
nomic groups. For example, species in the order Paramelemorphia 
(bandicoots and bilbies) tend to be overpredicted. Likewise, our 
models tend to overpredict densities for species in the families 
Geomydae (e.g., gophers), Camelidae (e.g., camels and guana-
cos), Paramelidae (bandicoots) and Pteropodidae (flying foxes). 
Conversely, the families Erethizontidae (New World porcupines) 
and Eupleridae (Madagascan carnivores) are consistently underpre-
dicted. This might indicate that the density of these groups might 
be influenced by factors that are not included in our model. For 

most groups, however, species could be either over- or underpre-
dicted, with no systematic bias to either consistently higher or lower 
densities when compared with empirical estimates (Supporting 
Information Figure S5).

4  |  DISCUSSION

In this study, we provide predictions of average population densities 
for all terrestrial mammal species, considering their biological traits, 
environmental conditions, phylogenetic relatedness and geographi-
cal location. Acknowledging that population density can vary sub-
stantially within species, we also provide a range of plausible density 
estimates per species that reflect intraspecific variability in popula-
tion density estimates and model uncertainty, which increases with 
the extent of taxonomic extrapolation. These predictions differ sub-
stantially from those obtained by simple allometric models based on 
body mass and dietary category, and also differ visibly from those 
obtained using the best model for mammals in the study by Santini, 
Isaac, Maiorano, et al. (2018) (Supporting Information Figure S6–S7).

F I G U R E  1  Taxonomic coverage of the 5,412 population density estimates used to train the final model (737 species, 90 families and 21 
orders). (a) Percentage of species included (dark blue) per order, and (b) percentage of families included (dark blue) per order. The percentage 
is reported on top of the bars, and the fraction in parentheses indicates the number of species or families over the total. (c) Body mass 
distribution for all mammals (from EltonTrait database) and mammals in TetraDENSITY (updated version of the database presented by 
Santini, Isaac, & Ficetola, 2018). (d) Geographical coverage of density estimates 
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4.1  |  Drivers of average population density

Our results concur with previous studies regarding the effect of 
body mass and diet on population density as the primary drivers of 

density across a wide range of taxa. The nonlinearity in log-domain 
between body mass and density in mammals was first described 
by Silva and Downing (1995) and later supported independently 
by studies addressing the allometry of home range size (Kelt & Van 
Vuren, 2001). Very small mammals (e.g., shrews) have extremely high 

F I G U R E  2  Relative importance of fixed effects, measured as the individual contribution of each predictor to the variance explained by 
the model. Importance values are normalized to sum to 100 
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mass-specific basal metabolic rates and are specialized on widely 
dispersed resources (e.g., molluscs and arthropods); this limits their 
density to lower values than those predicted by a linear relationship. 
Conversely, above a certain body size, foraging over a very large 
area (or defending a territory) as predicted by a linear relationship 
becomes energetically unsustainable (Kelt & Van Vuren, 2001). We 
found that animal-based diets were associated with lower density 
values, as expected given the lower availability and sparse nature of 
trophic resources and the costs involved in searching and subduing 
prey (Carbone & Gittleman, 2002; Carbone et al., 2007). Likewise, 
the percentage of granivory was also associated with lower density 
values, which reflects the nature of seeds as resources. Seeds are 
temporally and spatially variable in abundance in comparison to 
other plant material and are better (mechanically and chemically) de-
fended than other plant parts (Hulme & Benkman, 2002). Although 
seeds have a high energy content, this might not compensate for 
the time and energy costs of foraging by specialized granivores (i.e., 
rodents) in comparison to other herbivores that forage on lower-
quality but remarkably more abundant vegetation. Furthermore, 
temporal fluctuation in seed availability contributes to the marked 
demographic cycles observed in granivores (Hansson, 1998). Hence, 
although the population density of granivores can vary substantially 
through time and space, their average is expected to be lower than 
that of other similar-sized herbivorous species.

Our results also show a novel pattern regarding locomotor 
habits, with aerial species living at lower population densities than 
terrestrial and arboreal species and with fossorial species living at 
higher densities. Aerial, arboreal and fossorial species are generally 
characterized by lower mortality rates than terrestrial species owing 
to lower predation rates (Healy et  al.,  2014), which, all else being 
equal, might lead to higher densities because of the altered balance 
between birth and mortality rates. Fossorial mammals are also char-
acterized by lower metabolic rates than similar-sized species, which 
might also explain their higher densities (McNab, 1979). Volant mam-
mals (i.e., bats), in contrast, are characterized by smaller reproduc-
tive outputs and slower reproductive rates than other similar-sized 
mammals (Barclay & Harder, 2003). The density of bat species might 
also be limited by the availability of roost sites (e.g., caves, rock crev-
ices and tree cavities). Finally, although the resources of frugivorous 
bats might be comparable to those of other frugivorous mammals, 
insectivorous bats rely on different trophic resources from terres-
trial insectivorous species. The reproductive strategy and availabil-
ity of roosts and resources might explain why bats exhibit lower 
average density than insectivorous species of a similar sized, despite 
their lower mortality on average. However, a minority of estimates 
in the database refer to aerial species, and only relatively few density 
estimates are available for fossorial species; in both cases, the sam-
ple is not taxonomically representative, hence uncertainty around 

F I G U R E  4  Comparison of error 
estimates. The pooled SD of species-level 
estimates is used as a reference point 
representing the average variability in 
recorded population density estimates 
within species. Model’s predictions 
standard errors (SEs) indicate the average 
error for the predictions of species 
included the training dataset. The root 
mean square error (RMSE) estimates 
obtained by block cross-validation 
indicate the average error made when 
extrapolating to novel geographical 
areas or different taxa. Spatial-block = 
5° × 5° geographical areas not included 
in the training dataset; species-block = 
species not present in the training dataset 
but belonging to families present in the 
training dataset; family-block = species 
belonging to families not present in the 
training dataset but belonging to orders 
present in the training dataset; order-
block = species belonging to orders not 
present in the training dataset. Error bars 
encompass the interquartile range of 
the distribution (.25–.75 quantiles). Error 
estimates are all on a log10 scale 
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these density predictions remains high, and further investigation is 
needed.

Finally, our model also supports previous findings on the nega-
tive effect of precipitation seasonality on mammal densities (Santini, 
Isaac, Maiorano, et al., 2018), which might be attributable to higher 
seasonal mortality and seasonal resource bottlenecks, and a non-
linear relationship with primary productivity with lower average 
density in highly productive areas, which might reflect the higher 
competitive and predatory pressure owing to the higher number of 
species in these regions (Santini, Isaac, Maiorano, et al., 2018).

4.2  |  Uncertainty in model predictions

Our predictions exhibited variable amounts of uncertainty, which 
depended on the degree of taxonomic extrapolation. Predictions of 
average density for species and areas included in the dataset have 
relatively small error, substantially smaller than the error one would 
make by assuming that a single density estimate from the literature 

can be representative of the average density of a species. Instead, 
the error associated with the prediction for species in families with 
density estimates included in the training dataset is comparable to 
the observed intraspecific variability. On the contrary, the predic-
tions for species belonging to families or orders not included in the 
training dataset yield considerably higher errors, although they are 
plausibly the best estimates available to date. In general, average 
population densities can be informative for species for which no 
family or order extrapolation was made, but focusing on predictive 
intervals is safer for family and order extrapolations. The error of 
extrapolating to novel areas is higher than that for intrafamily ex-
trapolations (to new species) but lower than the error associated 
with extrapolations to families or orders that were not included in 
the training datasets (e.g., Monotremata). Yet, the density estimates 
on which the model is fitted encompass all biomes and a large por-
tion of dry lands, except for large deserts and the northern Asiatic 
continent; therefore, the spatial errors of most predictions are ex-
pected to be lower than those estimated by spatial-block cross-
validation. All in all, although the error of our density predictions 

F I G U R E  5  Distribution of population 
density predictions per taxonomic order. 
Coloured dots are used for orders with 
insufficient predictions to produce a 
kernel density. Black triangles represent 
the averages of empirical estimates for all 
species in the dataset 
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can exceed one order of magnitude in poorly known species (thus 
being uninformative for many applications), the range of density es-
timates across all species span more than eight orders of magnitude. 
Hence, focusing on distribution data only, while not accounting for 
the fact that species can vary enormously in their average popu-
lation density, can be more problematic for estimating population 
protection and/or persistence (e.g., Santini et al., 2014). Studies that 
are expected to benefit from such estimates are those encompass-
ing a wide range of functionally distant species. For example, the 
wood mouse (Apodemus sylvaticus) is predicted to have an average 
density of 1,840 individuals/km2 (95% CI: 599–5,653) and the bank 
vole (Myodes glareolus) a density of 1,569 individuals/km2 (95% CI: 
548–4,493). The uncertainty around these estimates prevents con-
clusions about differences in their abundance or biomass. However, 
it would be highly informative to account for these estimates when 
assessing or planning conservation areas in a multispecies study also 
including, for example, the Eurasian lynx (Lynx lynx), which has a pre-
dicted density of .01 individuals/km2 (95% CI: .003–.035). Likewise, 
the uncertainty is moderate when one compares the expected bio-
mass of a species over an area, which would result in 55.2 kg/km2 
(95% CI: 18–169.6) of wood mice (c.  30  g) and .180  kg/km2 (95% 
CI:  .054–.630) of lynxes (c. 18 kg).

Obviously, all applications that can benefit from such estimates 
are those that do not require a real quantification of density, popu-
lation size or biomass, but consistent and evidence-based estimates 
of how species are expected to differ in these respects. In the next 
section, we illustrate a variety of applications that might benefit 
from integrating such density estimates. Some of these cases typ-
ically ignore how density varies across species and rely only on dis-
tribution data, whereas others have integrated such information but 
using simpler approaches.

4.3  |  Applications

Although acknowledging that many wildlife management applica-
tions require more accurate estimates from ad hoc field surveys 
(which will hardly ever be replaceable by model predictions), cost-
efficient methods for estimating the potential size of populations 
over vast areas can find a broad array of applications in ecology and 
conservation. As in previous studies relying on different approaches 
(e.g., Fechter & Storch, 2014; Galaverni et al., 2016), our estimates 
allow us to estimate a range of plausible population abundance given 
a predefined area. Given that defining a distribution area shares its 
amount of uncertainty (Fourcade et al., 2018; Norberg et al., 2019; 
Santini et al., 2021), a hierarchical bootstrapping approach can com-
bine probabilistic estimates of species distribution with a distribution 
of estimates of population abundance. In fact, one can use the error 
estimates that we provide to sample plausible density values from 
a log-normal distribution (see example in Supporting Information 
Appendix S3).

Macroecological studies might benefit from our set of average 
population density estimates for all terrestrial mammal species. For 

instance, global biomass estimates of vertebrates are typically based 
on crude assumptions (Bar-On et  al.,  2018), whereas our refined 
density estimates open up possibilities to improve these large-scale 
biomass estimates. Furthermore, species-specific abundance maps 
based on our density predictions and their uncertainty can be com-
bined to infer community-level metrics, such as species diversity 
(alpha, beta and gamma) and community size (Wang et  al.,  2021), 
providing valuable information for understanding the facets of re-
gional biodiversity. Other applications include the calculation of 
species abundance distributions (SADs) at broad spatial scales (e.g., 
ecoregions), which might provide clues into the evolutionary un-
derpinnings of biodiversity (Fukaya et  al.,  2020), and the explora-
tion of phylogenetic patterns of species abundance across taxa (Pie 
et  al.,  2021). Finally, estimates of average population density can 
potentially also be used to improve estimates of large-scale trophic 
web structures (i.e., meta-webs), which currently rely on only species 
distribution data and binary species interactions (Braga et al., 2019; 
O’Connor et al., 2020).

Estimation of the average expected size of a population over a 
large area can be used for preliminary assessments for the manage-
ment of human–wildlife conflict and problematic species (Fechter 
& Storch, 2014; Galaverni et al., 2016; Lewis et al., 2017), disease 
control (Cheeseman et al., 1985; Jaenson et al., 2012) or species of 
conservation concern (Jędrzejewski et al., 2018; Okello et al., 2015; 
Tempa et al., 2019). Likewise, such predictions can find application 
in large-scale and multispecies conservation analyses. For exam-
ple, population density estimates can be used to set baselines for 
conservation, to estimate the change in abundance from a pristine 
condition (Rodrigues et  al.,  2019) or to set targets for population 
reintroduction in the absence of more accurate information (e.g., 
introductions of functional counterparts of locally extinct species; 
Svenning et al., 2016). Other conservation-oriented applications in-
clude the combination of population density estimates with popu-
lation targets to estimate minimum required areas for conservation 
(Hilbers et al., 2017) or their application for setting spatial conserva-
tion targets (Di Marco et al., 2016). They can also be used to perform 
large-scale assessment of protected areas that accounts for the di-
versity of estimates of abundance per unit area across the set of spe-
cies considered (Clements et al., 2018; Santini et al., 2014, 2016). For 
example, some studies have shown that overlooking differences in 
species population density consistently over-estimates the protec-
tion level of protected area networks for species living at low den-
sity (Clements et al., 2018; Santini et al., 2014, 2016). Conservation 
planning should also rely on the best possible data available to derive 
plausible targets of population persistence (e.g., by combining hab-
itat suitability and density estimates) (Di Marco et al., 2016; Flather 
et al., 2011; Hilbers et al., 2017; Pressey, 2004; Traill et al., 2007). For 
example, approximate density estimates have been used for large-
scale conservation planning exercises (de Oliveira et al., 2009) and 
to estimate population viability at the landscape level and identify 
management options (Akçakaya et al., 2004; Carroll et al., 2003).

Large-scale assessments of species conservation status have 
mostly relied on geographical range maps and expert-based 
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suitability models (e.g., Bird et  al.,  2012; Buchanan et  al.,  2008; 
Tracewski et al., 2016). Predictive models of population density can 
inform Red List assessments for species lacking abundance data 
(Cazalis et al., 2022; Santini et al., 2019). However, given that under 
the Red List criteria the conservation status of a species depends on 
the criterion that indicates the most threatened category, the appli-
cation of criteria C and D using large-scale abundance estimates can 
be very informative at identifying species that would not be cate-
gorized as threatened by considering their distribution only (Santini 
et al., 2019). For example, a species with an area of occupancy >2,000 
km2 is not considered threatened according to criterion B. However, 
a large carnivore with a density of .01 individuals/km2 would be ex-
pected to have a population of c. 40 individuals in an area of 4,000 
km2, which would be sufficient to be listed as “critically endangered” 
according to criterion  C. Estimates of average population density 
have also been used to project global biodiversity indicators into 
the future (Visconti et al., 2016) and are thus informative for global 
biodiversity assessments and forecasting population trends in the 
future when combined with species distribution models.

4.4  |  Caveats and future research lines

In this study, we modelled the average population density of mam-
mal species as a function of both species characteristics and climatic 
variables, in line with previous studies (Currie & Fritz, 1993; Pettorelli 
et al., 2009; Santini, Isaac, Maiorano, et al., 2018). The use of climatic 
variables in a cross-species model naively assumes that all species 
respond in a similar manner to environmental factors, which is a nec-
essary simplification for most species that do not have sufficiently 
distributed density estimates to enable estimation of their species-
specific responses to environmental variables. Although species are 
likely to exhibit different relationships with the environment, the 
selection of environmental variables in the model suggests that the 
environment is nonetheless important in explaining how average 
population density varies across species globally. However, we call 
for caution from interpreting this relationship within each species 
for spatially explicit predictions. The development of spatially ex-
plicit species-specific models for data-rich species would be prefer-
able in this respect (e.g., Jędrzejewski et al., 2018; Lewis et al., 2017).

Our estimates are likely to be influenced by anthropogenic pres-
sure, both because densities have been modified depending on 
how animals are positively or negatively impacted by humans (Said 
et al., 2016; Šálek et al., 2015; Tucker et al., 2020) and because some 
species might typically be studied in more pristine environments, 
whereas others are typically studied in human-dominated areas 
(e.g., badgers and foxes; Schley et al., 2004; Soulsbury et al., 2007; 
Van Apeldoorn et al., 2006). For example, some species of carnivore 
might occur at higher densities in disturbed habitat than in their nat-
ural habitat (Šálek et al., 2015), whereas highly threatened species, 
such as pangolins, might occur at lower densities because they are 
disproportionately persecuted (Ingram et  al.,  2017). In a way, the 
predictions we make reflect the taxonomically biased knowledge on 

animal abundance. It is, for example, conceivable that predictions 
for species in functional groups with generally higher extinction risk 
(e.g., Davidson et al., 2009) are biased to lower densities than those 
expected in pristine conditions (Santini & Isaac, 2021). Integrating 
variables of human impact in predictive models would be problem-
atic for extrapolation to different areas because species cam show 
diverse responses to human impact and because the overall posi-
tive effect at the global scale is likely to arise from a filtering effect, 
whereby sensitive species are absent in highly anthropogenic areas, 
whereas resilient species thrive as a result (Tucker et al., 2020).

Although different techniques are deemed appropriate and 
used consistently to estimate densities in different taxa, they might 
influence model predictions to some extent. For example, the dif-
ferences detected between aerial, terrestrial or fossorial mammals 
might, in part, reflect a sampling artefact. Further research on such 
differences and their underlying causes is needed.

Our results also highlight future avenues of research in the 
ecology and macroecology of population density. First, they high-
light priorities for data collection, particularly in Paucituberculata, 
Notorycteromorphia, Monotremata, Tubulidentata, Afrosoricida 
and Chiroptera. Even a few empirical estimates for these groups 
might substantially improve our predictive ability. Second, they 
highlight knowledge gaps about species-specific drivers of variation 
in population densities. To ensure model predictions of all species, 
here we focused on biological variables with complete information, 
namely body mass, diet and locomotor activity. However, the reso-
lution and quality of these variables could be improved in the future. 
For example, expressing diet as percentage of item consumption is 
definitely an improvement compared with coarse diet categories, 
but still ignores that in some species diet can vary substantially 
across habitats. For example, the CarniDIET database (Middleton 
et  al.,  2021) contains several locally recorded diets for >100 spe-
cies of carnivores, therefore allowing assessment of how local prey 
availability and diversity can influence predator population densi-
ties. Furthermore, life-history traits (e.g., litter size and sexual ma-
turity age) and social (e.g., group size), reproductive (e.g., monogamy 
vs. polygamy) and territorial behaviour are unexplored factors that 
might also explain why some taxa tend to deviate substantially from 
model predictions. Data on such factors are limited and prevent the 
development of better predictive models for all mammals. Yet, data 
on a minority of taxa might be available and could allow a first the-
oretical exploration that might indicate the necessity of expanding 
our ecological knowledge on that particular trait. For example, it has 
recently been shown that species with large brain masses relative to 
body mass tend to live at lower densities owing to higher energetic 
costs (Gonzalez-Suarez et  al.,  2021); however, data on brain mass 
are available for only a limited number of mammal species, pointing 
out that measurement of brain sizes in other species could definitely 
open up novel research lines in macroecology and, eventually, in-
crease our predictive capacity.

This study provides a comparative overview of population 
densities in terrestrial mammals that can find applications in many 
ecology and conservation studies. The quality of our estimates is 
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contingent on the data available and, as more data are collected, 
we will be able to provide more accurate and reliable predictions of 
species population density. Our approach can be applied to other 
taxa for which a sufficiently representative set of density esti-
mates is available. Future studies might explore spatially explicit 
approaches to predict population density in species for which 
many empirical estimates are available (Jędrzejewski et al., 2018; 
Lewis et al., 2017).
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