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Abstract

Observed patterns of species richness at landscape scale (gamma diversity) cannot

always be attributed to a specific set of explanatory variables, but rather different

alternative explanatory statistical models of similar quality may exist. Therefore

predictions of the effects of environmental change (such as in climate or land cover)

on biodiversity may differ considerably, depending on the chosen set of explanatory

variables. Here we use multimodel prediction to evaluate effects of climate, land-use

intensity and landscape structure on species richness in each of seven groups of

organisms (plants, birds, spiders, wild bees, ground beetles, true bugs and hoverflies)

in temperate Europe. We contrast this approach with traditional best-model

predictions, which we show, using cross-validation, to have inferior prediction

accuracy. Multimodel inference changed the importance of some environmental

variables in comparison with the best model, and accordingly gave deviating

predictions for environmental change effects. Overall, prediction uncertainty for the

multimodel approach was only slightly higher than that of the best model, and

absolute changes in predicted species richness were also comparable. Richness

predictions varied generally more for the impact of climate change than for land-use

change at the coarse scale of our study. Overall, our study indicates that the

uncertainty introduced to environmental change predictions through uncertainty in

model selection both qualitatively and quantitatively affects species richness

projections.
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I N T R O D U C T I O N

Understanding the causes and drivers of species diversity is

of immediate importance for land-use management policy

(e.g. Atkinson et al. 2005). To preserve biodiversity, we need

to be as certain as possible about which management

practices are likely to affect it, and which will likely not.

There are obvious answers at the local scale, in that for

example draining swamps or heavily applying pesticides to

crops will reduce species richness. At a larger spatial scale,

i.e. at several square kilometres, local effects are aggregated

(Eggleton et al. 2005). In which way, is unclear: Is a mosaic

of land uses best for biodiversity? Do we need certain

minimum area to maintain a desired level of species

richness? Can corridors of semi-natural habitat ensure the

viability of population in small patches in otherwise

fragmented landscapes? Answers to these questions are of

high relevance for conservation strategies and landscape

planning. However, as data on species richness across large

geographical transects for different species groups are rare,

there may be a risk of over-interpreting the results.

The traditional approach to predicting the effects of

environmental change on species diversity is to analyse the

present situation and find the best statistical model, usually

according to information theoretical criteria, as a basis

for extrapolation to future change scenarios (Burnham

& Anderson 2002). Several factors may, however, make the

identification of a single best model impractical (Chatfield

1995): (i) collinearity amongst explanatory variables; (ii)

sample size constraints on model complexity; (iii) ill-posed

nature of the problem, i.e. lack of uniqueness of a solution

(also known as �equifinality�). These problems led to the

recent re-embracement (Chatfield 1995; Hilborn & Mangel

1997) of the multiple working hypotheses-idea of Cham-

berlain (1897). Additionally, relying on one model to capture

the ecological reality will almost certainly be inappropriate

(Chatfield 1995; Burnham & Anderson 2002; Thuiller 2004;

Araujo et al. 2005; Link & Barker 2006). In consequence,

both inference (Link & Barker 2006) and prediction (Araújo

& New 2007) should ideally be based on multiple models

(Wintle et al. 2003). While on the positive side multimodel

analysis leads to a better representation of the problem, its

interpretation is more difficult and predictions will often

show larger uncertainty. Furthermore, multimodel analyses

are �deep waters, mathematically, and no consensus has

emerged in the substantial literature on a single approach�
(Link & Barker 2006, p.2630).

Here, we analyse one of the best multigroup data sets on

species richness across temperate Europe, assembled as part

of the EU project GREENVEINS (Billeter et al. 2008), with

particular emphasis on alternative explanations, uncertainty

and management implications. To analyse a wide range of

landscape structures and land-use intensities, species diver-

sity data were collected in seven different countries, also

covering different soils and climate. In our analysis we

assembled several alternative explanatory models for seven

groups of organisms (plants, birds, spiders, wild bees,

ground beetles, true bugs and hoverflies), models which

cannot be differentiated on statistical grounds, but with

potentially fundamentally different local management con-

sequence. Our intention here is to contrast inference of

biodiversity pattern based on �the single-best model

approach� and a multiple-model analysis (see also Wintle

et al. 2003). Moreover, we use model averaging for

predicting species diversity for future climate, land-use

intensity and landscape structure scenarios, and quantify the

uncertainty of predictions because of alternative explana-

tions for species diversity pattern.

M A T E R I A L S A N D M E T H O D S

Data

The basis of the present analysis is the species richness data

from the EU project GREENVEINS (Bugter et al. 2001). These

data are unique in several respects, most importantly

because they comprise seven groups of organisms and

because land-use intensity and landscape structure data are

available for each site. The methods are described in detail

in Schweiger et al. (2005) and Dormann et al. (2007). Along a

pan-European transect from France through Belgium, the

Netherlands, Germany, Switzerland, Czech Republic to

Estonia, species richness within 25 sites of 16 km2 each

were assessed using a common protocol in 2001 and 2002.

Vascular plants were recorded in 85–300 relevés in each site;

birds were recorded in 20 points per site; arthropods (wild

bees: Apoidea, true bugs: Heteroptera, spiders: Araneae,

ground beetles: Carabidae, hoverflies: Syrphidae) were

collected in 16 duplicated sets of flight and pitfall traps in

each site in a stratified sampling design. Using individual-

based species-accumulation curves (Coleman et al. 1982) we

re-calculated species richness for each site to correct for the

large differences in the number of trapped individuals per

site (Gotelli & Colwell 2001).

Landscape structure metrics were computed for digital

vector maps based on ortho-rectified aerial photographs and

ground-validated habitat classification (Bailey et al. 2007).

Land-use intensity (i.e. fertilizer and pesticide application

frequency, stocking densities, numbers of crop in rotation)

was assessed by questionnaire-based interviews with local

farmers (Herzog et al. 2006). Soil variables were extracted

from the FAO ⁄ UNESCO world soil map (FAO ⁄ UNESCO

2003). Climate data are based on Willmott et al. (2004). To

reduce the number of explanatory variables, we combined

different land-use types to arable, woody, herbaceous

and other. Woody and herbaceous were again summed to
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semi-natural habitat. To quantify landscape structure

(McGarigal et al. 2002), we used a measure of habitat

integrity (log-transformed proximity index). Temperature

and precipitation data for the months December to

February were aggregated as winter, March to May as

spring and so on.

Statistical analysis

First, we reduced the number of explanatory variables from

an initial 33 to a remaining 19 based on cluster analysis

(Harrell 2001; based on Spearman�s rank correlation cutoff

of q2 = 0.4), using expert consensus on which variables to

retain. Within this reduced set of variables, inter-correlations

were still apparent (Table S1).

Next, we decided on a minimum number of 18 residual

degrees of freedom for our analysis, thereby restricting the

model complexity to five terms plus intercept. We con-

structed all possible combinations of the 19 variables,

including quadratic effects and first-order interactions,

of fewer than six terms (see Whittingham et al. 2007

for a similar analysis). Because our response variables

(SAC-corrected species richness for each group) had

normally distributed residuals, we used multiple linear

regression to estimate model parameters. We ranked models

based on these combinations by their Bayesian Information

Criterion (Burnham & Anderson 2002; Wintle et al. 2003).

The best model represents the outcome of a traditional one-

model analysis.

Finally, we calculated the Bayesian Information Criterion

(BIC) weight wi for each model i, defined as

wi ¼
expð�BICi=2ÞpiP

j

expð�BICj=2Þpj

where the priors p are taken to be identical (Link & Barker

2006). The importance of an environmental variable in a

model (expressed as partial R2) was multiplied by the BIC-

weight and summed over the best 100 models (multimodel

inference). This weighted mean importance follows the

same logic as in the model averaging: the better the model

(larger BIC-weight), the more reliable is its information on

the importance of its variables.

The predicted mean species richness was calculated as

yh = Xhb, where b is the parameter vector from the multiple

regression of yobs on X, and Xh are the environmental

variable values for the validation data or scenarios,

respectively. To quantify uncertainty in model forecasts,

we used the following formula to calculated standard

deviation of the forecast, s2
h (Neter et al. 1993, p. 235):

s2
h ¼ MSE

1

k
þ XT

h XT X
� �

Xh

� �

where MSE is mean residual sum of squares for a model and

k is the number of parameters in the model. Based on this

formula the probability density function (PDF) of predicted

species richness for the single-best and for each of the best

100 models are defined as normal distributions with mean yh

and standard deviation sh. PDF from the 100 best models

were combined using multimodel forecasting (Link &

Barker 2006). Here, the multimodel PDF is the weighted

sum of the 100 normal distributions, where the weights are

the BIC-weights.

The above analysis yields PDF for species richness. We

repeated the analysis twice, once as a sixfold cross-validation

to assess prediction error (fitted on five-sixth of the data set,

validated on one-sixth), and then on the full data set to

derive the PDF to be used in the scenario predictions

(defined below). In the cross-validation, PDF-derived

probabilities of the observed hold-out sample pi were

converted into deviance (¼ �2
Pn

i¼1 log pi where n is the

number of hold-out cases) and averaged over the six cross-

validations: the lower the deviance, the higher the prediction

accuracy.
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Figure 1 Prediction accuracy of the single-

best and the multimodel approach based on

sixfold cross-validation (mean ± 1 SE).

Lower deviance values indicate better agree-

ment between model prediction and obser-

vation on hold-out samples.
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For the scenario predictions, we fitted models on the full

data set and calculated PDF for the respective scenario. All

analyses were implemented in the software package R (R

Development Core Team 2005), with the additional

packages gtools and vegan.

Environmental change scenarios

To illustrate the consequences of differences between

models, we subjected them to three example scenarios. In

temperate Europe land use is likely to change severely in the

decades to come, mainly because of Common Agricultural

Policy of the EU (European Commission Directorate-

General for Agriculture 2003). At the same time, climate

change is predicted to affect precipitation and temperature

pattern across Europe (IPCC 1998). While there may be

interactions between land use and climate, we consider them

as independent scenarios for illustration purposes.

Our present-day reference is the measured species

richness for mean environmental conditions. For the climate

change scenario, precipitation and temperatures in summer

and autumn were increased by 10%, while they were

decreased by the same amount in winter and spring. This is

not to reflect a specific scenario for temperate Europe, but

the tendency predicted by the IPCC (1998). In the land-use

intensity change scenario, climate, soil properties and

landscape structure were left constant, but nitrogen fertiliser

input increased by 50% and pesticide load by 25%

(following Busch 2006). To construct a landscape structure

scenario, we followed the trend forecasted by Rounsevell

et al. (2006), with the percentage of arable land decreasing by

6% and that of forested land and semi-natural habitats

increasing by 3% until 2050. The proximity index of the

different habitats was adjusted according to the correlation

between percentage semi-natural habitat and proximity

index in the data set. A 3% increase for example in

woodland leads to a 3% · 0.6 = 2.4% increase in proximity

of woodland habitats (0.6 being the slope estimate between

percentage and proximity of woodland). Increasing the

amount of forest and semi-natural habitats while reducing

farming area is a trend derived from the EU�s Common

Agricultural Policy (European Commission Directorate-

General for Agriculture 2003), contrasting with true long-

term trends (Strijker 2005).

R E S U L T S

Prediction accuracy and model weights

The single-best model-approach has consistently lower

prediction accuracy than the multimodel approach (Fig. 1).

Across all seven species groups, deviance in the single-best

model was over twice that of the multimodel approach,

while cross-validation variability (in terms of standard

errors) was over five times higher.

BIC-weights for the different models (Fig. 2) give

evidence that in several groups the best two or three

models have similar fits. This means that alternative

explanations for the observed data exist, which are captured

in the multimodel approach. While the single-best model

may be either correct or misleading, the multimodel

prediction encompasses many alternatives, outbalances

wrong predictions, and yields lower cross-validation predic-

tion errors.

Drivers of species richness across temperate Europe

Variance in species richness was explained by the different

sets of environmental variables to differing degrees for the

different taxa. Species richness analyses for wild bees and

true bugs yielded excellent model fits (bees: mean adjusted

R2 = 0.88, multimodel range 0.80–0.89; bugs: mean = 0.75,

range 0.69–0.81). All other groups had good to moderate

R2-values (vascular plants: mean = 0.58, range 0.51–0.63;

birds: mean = 0.60, range 0.52–0.63; spiders: mean = 0.61,

range 0.49–0.70; ground beetles: mean 0.60, range 0.52–

0.67; hoverflies: mean 0.52, range 0.44–0.67).

Climate, landscape structure, land use and soil properties

were of very different importance for the seven groups of

organisms, but general trends emerged (Table 1). Across all

groups, climate was most important (accounting for 36%
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Figure 2 Weights given to the best models (based on Bayesian

Information Criterion, BIC). Only the first 12 models of all 100
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model eight onwards the weights are lower than 0.01 (i.e. 1%).

Plants, ground beetles and bugs spread the main weight over four

to five models, while for spiders, birds, bees and hoverflies the first

(and second) model carry most of the weight. Compare Fig. 4 for

birds to see that models 2 to 100 can still overrule the dominant

model 1.
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of variation in species richness), followed by landscape

structure (27%), soil properties (21%) and land-use

intensity (16%). The importance of environmental variables

from each group of predictors inferred by the single-best

model was generally similar to that inferred by the

multimodel approach for most groups. Explained variance

for wild bees, true bugs and spiders, however, differed

notably (i.e. to over 10%) between the best and the

multimodel approach (Table 1). Wild bees were far less

sensitive to soil properties as the best model would have

made believe, while the opposite was true for true bugs.

While spider species richness was primarily driven by land-

use intensity according to the best model, soil properties

won over in multimodel inference.

More important than changes in the balance of impor-

tance is the fact that the best model often cannot

incorporate variables from each group of variables, while

the multimodel approach can. BIC weights were spread

more evenly for bugs, carabids, bees, spiders and plants than

for birds and hoverflies (Fig. 2). This implies that in the bird

and hoverfly analysis the difference in inference between the

best and the best 100 models should be smallest, as is indeed

the case (Table 1). Because of multimodel projections,

climate entered the predicting model for carabids, soil

properties for birds, landscape structure for spiders and

land-use intensity for bees, bugs and beetles (Table 1).

Hence, predictions for single- and multimodel approaches

can be expected to differ most for these combinations.

Multimodel projections of the effects of climate, land-use
intensity and landscape structure change on species
richness

Across all predictions and all groups, change in species

richness was usually low to moderate (Fig. 3). For most

groups, environmental change predicted increased species

richness, although clearly the level of uncertainty was large.

Wild bee species richness declines at warmer climates, and

hoverflies and spiders at increased land-use intensity. The

asymmetric probability density functions for bird species

richness under climate change illustrates one of the

strengths of multimodel projections. Similar, but less

pronounced, asymmetries in PDF can be observed for all

groups. Asymmetric, and its extreme multimodal, PDF

indicate that there are alternative statistical models explain-

ing the data, which differ fundamentally in their predictions

of environmental change. For future diversity pattern this

means greater prediction uncertainty, because the data do

not allow to sufficiently accurately pin-point the most likely

drivers of today�s species richness.

Surprisingly – and also reassuringly, as virtually all

previous analyses of diversity used the best model approach

– single-best model and multimodel projections were rather

similar (Fig. 4). Prediction error was slightly larger for the

multimodel predictions, and as expected from changes in

importance (Table 1), sometimes only the multimodel

approach predicted changes at all (e.g. increase of bee and

bug species richness under intensified land use).

D I S C U S S I O N

Drivers of species richness

Our analysis indicates that climate and land-use intensity,

but also soil variables and landscape structure are determi-

nants of species richness of vascular plants, birds and

arthropods along a European transect. Importance of each

of these four groups of environmental factors varies

considerably between organism groups (Table 1). Incorpo-

rating not only climate variables but also soil, landscape

structure and land-use intensity variables at this large spatial

scale has not been attempted before. Our results lend

support to previous studies (Franklin 1998; Seoane et al.

2003; Travis 2003; Buckley & Roughgarden 2004; Pearson

et al. 2004; Stefanescu et al. 2004), which indicate that using

climate models alone (Berry et al. 2002; Pearson & Dawson

2003; Huntley et al. 2004; Thomas et al. 2004; Thuiller et al.

2004; Araújo et al. 2005; Luoto et al. 2005) might overesti-

mate effects of climate change because other important

drivers were omitted.

Table 1 Relative statistical importance (partial R2) of environmental variable sets for species richness by best model (GLM) and multimodel

(MM) approach (total explained variance = 100%)

Plants Birds Wild bees True bugs

Ground

beetles Hoverflies Spiders

GLM MM GLM MM GLM MM GLM MM GLM MM GLM MM GLM MM

Climate 29.6 35.6 74.3 72.9 54.7 64.1 13.8 22.0 0.0 4.9 59.2 58.3 5.7 4.6

Soil 19.0 16.0 0.0 0.1 27.8 7.1 9.1 25.9 41.6 40.2 15.1 15.3 34.0 46.5

Landscape structure 21.2 15.2 25.7 26.8 17.6 27.7 77.1 49.3 58.4 53.7 0.0 0.0 0.0 6.4

Land-use intensity 30.2 33.1 0.0 0.2 0.0 1.2 0.0 2.9 0.0 1.2 25.8 26.4 60.4 42.6

Figures in bold highlight pronounced differences in relative importance of particular variable sets.
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The important role of soil characteristics is not surprising

for plants as their sessile and photo-autotrophic life style

makes them extremely dependent on substrate structure and

composition. A relatively large impact of soil properties

might also be quite obvious for ground dwelling organisms

such as carabid beetles or spiders, but would be less

expected for flying insects such as bugs, bees and hoverflies.

In most terrestrial arthropod species at least one develop-

mental stage is bound to the soil (Evans 1984). Larvae as

well as imagos of ground dwelling carabid beetles and

spiders are largely affected by microclimatic conditions that

are mediated by soil composition in interaction with climate

(Thiele 1977), although there are also direct effects of soil

properties on spiders (Schmidt et al. 2004) and indirect

effects on herbivores through plant quality and defence

(Hartley & Jones 1997). Most of the European bee species
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(c. 70%) are soil nesters (Cane 1991; Westrich 1996; Müller

et al. 1997) and a large proportion of fairly mobile insects

such as bugs or hoverflies hibernate in the soil (Evans 1984).

Our results indicate that soil properties most likely affect

arthropod species richness by acting on morphological (e.g.

ease of nest digging affected by soil bulk density) and ⁄ or

physiological demands (e.g. via pH or soil moisture as an

interplay of clay content and precipitation). There was no

correlation between plant species richness and richness of

any other group, as might have been expected for

pollinators (wild bees) or mainly phytophagous insects

(such as true bugs). In contrast to plants and insects,

diversity of birds was little affected by soil properties and

instead was governed by climatic effects, and landscape

structure (Kerr & Packer 1997; Hawkins et al. 2003).

Relative to climatic factors land-use intensity was

important for species richness only in plants, hoverflies

and spiders, while birds, bees, bugs and beetles were little

affected by land use in European agricultural landscapes

(consistent with van Diggelen et al. 2005; Kleijn et al. 2006).

These findings seemingly contradict the common interpre-

tation of the importance in anthropogenic land-use change

(see Sala et al. 2000). This might be because of co-variation

between anthropogenic and natural factors as the latter

influence the suitability of landscapes for agricultural (and

urban) development (Kühn et al. 2004) or to the long history

of human agriculture having already exterminated species

sensitive to land use. However, climate and soil are factors

that are less amenable to planning and management at the

local level (but see Bonan 2002; Webb et al. 2006, for
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examples of how landscape structure effects local climate).

Moreover, the significant contribution of landscape struc-

ture indicates the relevance of anthropogenic land-use

change on species diversity. Thus, in a specific site,

particularly one with very little semi-natural habitat, changes

in land-use intensity and landscape structure can have a large

impact on local species diversity (Schweiger et al. 2005).

Policy recommendations (e.g. within the Common Agricul-

tural Policy of the European Union Commission of the

European Communities 1999) building on the scientific

knowledge that set-aside fields, reduced pesticide applica-

tion, widening of field margins and so forth will lead to

higher local richness (Tscharntke et al. 2002), are by no

means refuted by our analysis at the much larger, landscape

scale.

Prediction uncertainties

Embracing alternative models will often lead to increased

prediction uncertainty, leaving conservationists and policy

makers with the dilemma of either choosing a potentially

misleading model or apparently large uncertainty when

evaluating options for landscape-scale management. Never-

theless our analysis indicates that land-use management, and

not only climate, affects species richness even at this large

spatial scale. Landscape structure and land-use intensity are

important correlates of species richness (Table 1). Thus

there is potential for mitigating effects of climate change by

adaptive management at the local scale.

Predictions of the effect of climate and land-use change

on species richness of the investigated seven groups of

organisms differ to varying degrees between models.

Climate change often (but not always) showed the largest

variability in predictions and strongest effects, but also

changes in land-use intensity affected species richness

(Fig. 3). All these projections are based on a correlative

analysis, and hence assume stationarity (i.e. all environment-

species richness relationships remain constant), which

ignores consequences of species adaptations to changing

climate and land use. The uncertainty attached to violations

of these assumptions cannot, as yet, be estimated and is

hence inevitably ignored (Dormann 2007).

The difference between the single-best and the multi-

model approach lies in model selection, while sampling error

remains constant: To derive the single best, all next-bests

necessarily are discarded. As our comparison shows, this is

to the detriment of prediction accuracy. Our conclusion is

that selection of the single-best model introduces model

selection error, which can be, to some extent, overcome by

the multimodel approach. Weighted model averaging (e.g.

Hoeting et al. 1999; Johnson & Omland 2004) is one option

to combine the different predictions of qualitatively

different models for species richness. As our results show,

model averaging attaches larger error to environmental

change predictions. On the other hand, using multiple

models also allows factors to influence predictions that have

not been singled out by the best model.

Ideally, we would understand the causal mechanism

driving species diversity, as that would allow us to construct

a mechanistic model and use that for predictions. However,

ecological processes are intrinsically complex (Turchin 2003)

and a causal explanation for regional biodiversity pattern will

certainly remain elusive for some time. This study shows

that while at present our data for some groups are not

sufficient to make robust predictions on the effect of

environmental change, we can use the multimodel approach

to account for model selection uncertainty of environmental

change predictions.

In conclusion, our study shows that any prediction of the

effects of climate or landscape-scale management on species

richness is burdened with potentially high uncertainty. By

focussing on the uncertainty arising from the difficulty of

identifying one single best model, this study analyses an

important aspect of prediction uncertainty. Using multiple

alternative models is a promising approach to embrace

model building uncertainty and to use it for quantifying

prediction uncertainty.
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