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ABSTRACT ARTICLE HISTORY
Generalized degrees of freedom (GDF), as defined by Ye (1998 JASA Received 14 April 2016
93:120-131), represent the sensitivity of model fits to perturbations of Accepted 31 March 2017
the data. Such GDF can be computed for any statistical model, mak-
ing it possible, in principle, to derive the effective number of param-
eters in machine-learning approaches and thus compute information-
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theoretical measures of fit. We compare GDF with cross-validation and complexity; Random forest
find that the latter provides a less computer-intensive and more robust

alternative. For Bernoulli-distributed data, GDF estimates were unsta- MATHEMATICS SUBJECT
ble and inconsistently sensitive to the number of data points per- CLASSIFICATION
turbed simultaneously. Cross-validation, in contrast, performs well also Primary 62; Secondary 07

for binary data, and for very different machine-learning approaches.

1. Introduction

In many scientific fields, statistical models have become a frequently used tool to approach
research questions. Choosing the most appropriate model(s), that is, the model(s) best sup-
ported by the data, however, can be difficult. Especially in ecological, sociological, and psy-
chological research, where data are often sparse while systems are complex, the evidence for
one particular statistical model may not be conclusive. The existence of alternative models,
which fit the data with comparable goodness, but yield considerably different predictions is
ubiquitous (e.g., Draper, 1995; Madigan et al., 1995; Raftery, 1996).

In ecological and evolutionary research, statistical procedures are dominated by an
“information-theoretical approach” (Burnham and Anderson, 1998, 2002), which essen-
tially means that model fit is assessed by Akaike’s Information Criterion (defined as
AIC = —2 log-likelihood + 2 number of parameters: Akaike, 1973). In this field, the AIC
has become the paradigmatic standard for model selection of likelihood-based models as
well as for determination of model weights in model averaging (e.g., Diniz-Filho et al.,
2008; Hegyi and Garamszegi, 2011; Mundry, 2011). In recent years, and particularly in the
field of species distribution analyses, non-parametric, likelihood-free approaches (“machine
learning”) have become more prevalent and in comparisons typically show better predictive
ability (e.g., Elith et al., 2006; Elith and Leathwick, 2009; Olden et al., 2008; Recknagel, 2001).
However, these approaches do not allow the computation of an AIC, because many of such
“black-box” methods are neither likelihood-based, nor can one readily account for model
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complexity, as the number of parameters does not reflect the effective degrees of freedom (a
phenomenon Elder (2003) calls the “paradox of ensembles”). Thus, at the moment ecologists
are faced with the dilemma of either following the AIC-paradigm, which essentially limits
their toolbox to generalized linear models (GLMs) and generalized additive models (GAMs),
or use machine-learning tools and closing the AIC-door. From a statistical point of view,
dropping an AIC-based approach to model selection and averaging is no loss, as an alternative
approximation of the Kullback-Leibler distance is possible through cross-validation.

In this study, we explore a potential avenue to unite AIC and machine learning, based on
the concept of generalized degrees of freedom (GDF). We explore the computation of GDF
for Gaussian and Bernoulli-distributed data as plug-in estimates of the number of parameters
in a model. We also compare such a GDF-AIC-based approach with cross-validation.

The article is organized as follows. We first review the generalized degrees of freedom con-
cept and relate it to the degrees of freedom in linear models. Next, we briefly illustrate the
relation between cross-validation and Kullback-Leibler divergence, as KL also underlies the
derivation of the AIC. Through simulation and real data we then explore the computation of
GDF for a variety of modeling algorithms and its stability. The article closes with a comparison
of GDF-based AIC and cross-validation-derived deviance, and comments on computational
efficiency of the different approaches and consequences for model averaging.

1.1. Generalized degrees of freedom

Generalized degrees of freedom (GDF), originally proposed by Ye (1998) and illustrated for
machine learning by Elder (2003), can be used as a measure of model complexity through
which we can make information theoretical approaches applicable to black-box algorithms.

In order to understand the conceptual properties of this method, we can make use of a
somewhat simpler version of degrees of freedom (df). For a linear model m,y = X + ¢, df
are computed as the trace of the hat (or projection) matrix H, with elements A;; (e.g., Hastie
et al., 2009, p. 153):

df,, = trace(H) = trace(X(X'X)'X"). (1)

For a linear model, this is the number of its independent parameters, that is, the rank of the
model. To expand this concept to other, non-parametric methods, making it in fact indepen-
dent of the actual fitted model, the definition above provides the basis for a generalized version
of degrees of freedom. Thus, and according to Ye (1998),

9y;
GDF,, = trace (H) = Zhii = Z a—y, (2)
i Yi

where y; is the fitted value. That is to say, a model is considered the more complex the more
adaptively it fits the data, which is reflected in higher GDE. Or in the words of Ye (1998,
p- 120): GDF quantify the “sensitivity of each fitted value to perturbations in the correspond-
ing observed value.” For additive-error models (i.e., Y = f(X) + ¢, with Var(e) = 0?), we
can use the specific definition that

_ X Cov(i g

GDF,, -
UE

. ©)

where N denotes the number of observations (Hastie et al., 2009, p. 233). Beyond the additive-
error model more generally, however, we have to approximate Eq. (2) in other ways. By fitting
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the model with perturbed y; and assessing the response in y;, we can evaluate a—;'f, according
1
to Elder (2003), so that

GDE~ S L) 4

2,.: Yi— i @
where ) is perturbed in such a way that, for normally distributed data, y; = y; + N'(n =
0, %) with o2 being small relatively to the variance of y.

In order to adapt GDF to binary data, we need to reconsider this procedure. Since a pertur-
bation cannot be achieved by adding small random noise to y;, the only possibility is to replace
0’s by 1's and vice versa. A perturb-all-data-at-once approach (Elder, 2003) as for Gaussian
data is thus not feasible. We explore ways to perturb Bernoulli-distributed y below.

The equivalence of GDF and the number of parameters in the linear model encourages us

to use GDF as a plug-in estimator of the number of parameters in the AIC computation.

1.2. Cross-validation and a measure of model complexity

Cross-validation is a standard approach to quantify predictive performance of a model, auto-
matically accounting for model complexity (by yielding lower fits for too simple and too com-
plex models, e.g., Hastie et al., 2009; Wood, 2006). Because each model is fitted repeatedly,
cross-validation is computationally more expensive than the AIC, but the same problem arises
for GDF: it requires many simulations to estimate it stably (see below).

We decided to use the log-likelihood as measure of fit for the cross-validation (Horne and
Garton, 2006), with the following reasoning. Let f; denote the model density of our data, y,
and let f; denote the true density. Then the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) is

D1 = / (logf; —logf;) f: dy. (5)

AIC is an estimate of this value (in the process taking an expectation over the distribution
of ). Now [ flog f; dy is independent of the model, and the same for all models under con-
sideration (and hence gets dropped from the AIC). So the important part of the KL-divergence
is

Dy o — / filogf; dy. (6)

This model log-likelihood can be estimated by cross-validation, where the expectation is over
the distribution of data not used in the estimation of 6, such that

K
oy ==Y _logfy s (y), (7)

i=1

where £cy is the sum over K folds of the log-likelihood of the test subset y’, given the trained
model f;_;, with parameter estimates 0= (Wood, 2015). To put this on the same scale as
AIC, we multiply by —2 to obtain the cross-validated deviance.

With the assumption of AIC and (leave-one-out) cross-validation being asymptotically
equivalent (Stone, 1977) and given the definition of AIC, we argue that it should be possible to
extract a measurement from £cy that quantifies model complexity, specifically the estimated



4 (&) S.HAUENSTEINETAL.

effective number of parameters, f) Hence,

AIC = —2¢,, +2p ~ —2Lcy
P~y — Ley. (8)

Embracing the small sample-size bias adjustment of AIC (Hurvich and Tsai, 1989; Sugiura,
1978), we get

p(p+ 1)

AICc = —24,, + 2p -|- ~ =20y

~ W —Lev) (N— 1)
P Tt N ©)

with p representing (estimated) model complexity, £,, the maximum log-likelihood of the
original (non-cross-validated) model, and N the number of data points.

Thus, we can compute both a cross-validation-based deviance that should be equivalent
to the AIC, —2£cy, as well as a cross-validation alternative to GDF, based on the degree of
overfitting of the original model (Egs. (8) and (9)).

This approach to computing model complexity is not completely unlike that of the DIC
(Spiegelhalter et al,, 2002), where pp represents the effective number of parameters in
the model and is computed as the mean of the marginal deviance in an MCMC-analysis
minus the deviance of the mean estimates: pp = D) — D(9) =20(0) — 20(0) (Wood,
2015). In Eq. (8), the likelihood estimate plays the role of £(), while the cross-validation
estimates m

2. Implementing and evaluating the GDF-approach for normally and
Bernoulli-distributed data

We analyzed simulated and real datasets using five different statistical models. Then we com-
puted their GDF, disturbing k data points at a time, with different intensity (only for normal
data), and for different values of k.

2.1. Data: Simulated and real

First, we evaluated the GDF-approach on normally distributed data following Elder (2003),
deliberately using a relatively small dataset: Nyorm = 250. The response y was simulated as
y~ N (Bo + Bixi + Baxt + Bsxy + Baxsxy, 1), with By = —5, g1 =5, B, = —10, 5 =10
Bs =10, and x; ~ U(0,1),i =1, 2, 3, 4. (This simulation was repeated to control for pos-
sible influences of the data itself on the resulting GDEF, but results were near-identical.)

We simulated binary data with Nyjpom = 300 (effective sample size ESSpinom = 150)
and y ~ Bern(logit ™' (By + B1x1 + Box? + Bsx, + Paxsx4)), with By = —6.66, B; = 5, B, =
—10, 83 =10, 8, = 10, and x; ~ U(0,1),i =1, 2, 3, 4.

Our real-world data comprised a fairly small dataset (Nphyseter = 261, ESSphyseter = 115),
showing the occurrence of sperm whales (Physeter macrocephalus) around Antarctica (col-
lected during cetacean IDCR-DESS SOWER surveys), and a larger global occurrence dataset
(Nvuipes = 12722, ESSyyipes = 5401) for the red fox (Vulpes vulpes, provided by the Interna-
tional Union for Conservation of Nature (IUCN)). We pre-selected predictors as described in
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Dormann and Kaschner (2010) and Dormann et al. (2010), yielding the six and three (respec-
tively) most important covariates. Since we are not interested in developing the best model,
or comparing model performance, we did not strive to optimize the model settings for each
dataset.

2.2. Implementing GDF for normally distributed data

A robust computation of GDF is a little more problematic than Eq. (4) suggests. Ye (1998)
proposed to fit a linear regression to repeated perturbations of each data point, that is, to
(y/ — ) over (y, — ;) for each repeatedly perturbed data point i, calculating GDF as the sum
of the slopes across all data points. As y; is constant for all models, and y; is constant for the
non-stochastic algorithms (GLM, GAM), the linear regression simplifies to y;" over y/. For
internally stochastic models, we compute a mean ¥, as plugin for ¥;, and therefore apply the
procedure also to randomForests, Artificial Neural Networks (ANNs), and boosted regression
trees (BRTs).

Elder (2003) presents this so-called “horizontal” method (the perturbed y’ and fitted " are
stored as different columns in two separate matrices, which are then regressed row-wise) as
more robust compared to the “vertical” method (where for each perturbation a GDF is com-
puted for each column in these matrices and later averaged across replicate perturbations).
Convergence is poor when using the “vertical” method, so we restricted the computation of
GDF to the “horizontal” method.

2.3. GDF for binary data

While normal data can be perturbed by adding normal noise (see the next section), binary
data cannot. The only option is to invert their value, that is, 0 — 1 or 1 — 0. Clearly, we
cannot perturb many data points simultaneously this way, as that will dilute any actual signal
in the data. However, for large datasets it is computationally expensive to perturb all N data
points individually, and repeatedly (to yield values for the horizontal method, see above). We
thus varied the number of data points to invert, k, to evaluate whether we can raise k without
biasing the GDF estimate.

2.4. How many data points to perturb simultaneously?

With the number of points to perturb, k, the number of replicates for each GDF-computation
(ngar) and the amplitude of disturbance (for the normal data), we have three tuning parameters
when computing GDF.

First, we calculated GDF for the simulated data and the sperm whale dataset with k taking
increasing values (from 1 to near N, or to ESS for binary data). Thus, random subsets of size
k of the response variable y were perturbed, yielding y'. After each particular perturbation,
the model was re-fitted to y'. To gain insight about the variance of the computed GDF values,
we repeated this calculation 100 times (due to very high computational effort, the number of
re-runs had to be limited to 10 for both randomForest and BRT).

The perturbation for the normally distributed y were also drawn from a normal distribu-
tion V' (0, 0.25 - Ggimulation)- We evaluated the sensitivity to this parameter by setting it to 0.125
and 0.5.
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2.5. Modeling approaches

We analyzed the data using generalized linear model (GLM), generalized additive model
(GAM), randomForest, feed-forward Artificial Neural Network (ANN), and boosted regres-
sion trees (BRT). For the GLM, GDF should be identical to the trace of the Hessian (and the
rank of the model), hence GLM serves as benchmark. For GAMs, different ways to compute
the degrees of freedom of the model have been proposed (Wood, 2006), while for the other
three methods the intrinsic stochasticity of the algorithm (or in the case of ANN of the initial
weights) may yield models with different GDF each time.

All models were fit using R (R Core Team, 2014) and packages gbm (for BRT: Ridgeway
et al.,, 2013, interaction depth = 3, shrinkage = 0.001, number of trees = 3,000, cv.folds =
5), mgcv (for GAM: Wood, 2006, thin plate regression splines), nnet (for ANN: Venables and
Ripley, 2002, size = 7, decay = 0.03 for simulated and decay = 0.1 for real data, linout = TRUE
for normal data), randomForest (Liaw and Wiener, 2002), and core package stats (for GLM,
using also quadratic terms and first-order interactions). R-code for all simulation as well as
data are available at https://github.com/biometry/GDE.

2.6. Computation of AIC and AIC-weights, from GDF and cross-validation

In addition to the number of parameters, the AIC-formula requires the likelihood of the data,
given the model. As machine-learning algorithms may minimize a score function different
from the likelihood, the result probably differs from a maximum likelihood estimate. To cal-
culate the AIC, however, we have to assume that the distance minimized by non-likelihood
methods is proportional to the likelihood, otherwise the AIC would not be a valid approx-
imation of KL-divergence. No such assumption has to be made for cross-validation, as £cy
here only serves as a measure of model performance. For the normal data, we compute the
standard deviation of the model’s residuals as plug-in estimate of o.

For the binary data, we use the model fits as probability in the Bernoulli distribution to
compute the likelihood of that model. We then calculated the AIC for all considered models
based on their GDF value. Due to the small sample sizes, we used AICc (Hurvich and Tsai,
1989; Sugiura, 1978):

GDF(GDF + 1)
AICc = —20,, + 2GDF 4 —— 2 0 1) 10
¢ + t N_GDF_1 (10)

We used (10-fold) cross-validation, maintaining prevalence in the case of binary data, to
compute the log-likelihood of the cross-validation, yielding £cy. To directly compare it to
AICc, we multiplied £cy with —2. The cross-validation automatically penalizes for overfitting
by making poorer predictions.

For model averaging, we computed model weights w,, for each model m, once for the GDF-

based AICc and for the cross-validation log-likelihood, using the equation for Akaike-weights
(Burnham and Anderson, 2002, p. 75; Turkheimer et al., 2003):

o 1 pAICe
wzlcc = W’ (11)
r=1
where A2¢ = AICc,, — AICCy;, taking the smallest AICc, that is, the AICc of the best of
the candidate models as AICc,y;,; M is the number of models to be averaged over.
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The same idea can be applied to cross-validated log-likelihoods, so that

et
cv
w, = ZM eA,CV’ (12)
r=1
where ASY = lcy, . — Lev,,, with £cy,,. being the largest cross-validated log-likelihood in
the model set.

3. Results

3.1. GDF configuration analysis

For normally distributed data, increasing the number of points perturbed simultaneously typ-
ically slightly increased the variance of the generalized degrees of freedom calculated for the
model (Fig. 1, left column, GLM, GAM, but not for randomForest and ANN). For GLM and
GAM, GDF computations yielded exactly the same value as the model’s rank (indicated by
the dashed horizontal line).

For simulated Bernoulli data (Fig. 1, central column), we also observed an effect of the
number of points perturbed on the actual GDF value, which decreased for GLM, GAM, and
ANN, but increased for BRTs with the number of data points perturbed. Several data points
needed to be perturbed (> 20) to yield an approximately correct estimate. More worryingly,
GDF depended nonlinearly on the number of data points perturbed, with values varying by
a factor of 2 for GAM and ANN. For GAM, the sensitivity occurs because the smoothing
parameter selection is sensitive to the quite severe information loss as more and more data
are perturbed. GLM and BRT yielded more consistent but still systematically varying GDF
estimates.

The same pattern was observed for the sperm whale data (Fig. 1, right column). For the
GLM, there was still some bias observable, also in the sperm whale-case study’s GLM. We
attribute it to the fact that by perturbing the binary data we also alter the prevalence.

The two replicate simulations yielded consistent estimates, except in the case of the normal
GAM and normal BRT. This suggests that both methods “fitted into the noise” specific to
the dataset, while the other methods did not. We did not observe this phenomenon with the
binary data.

For randomForest, GDF estimates center around 0, meaning that perturbations of the data
did not affect the model predictions. This is to some extent explicable by the stochastic nature
of randomForest, giving different predictions when fitted to the same data. We interpret the
value of 0 as the perturbations creating less variability than the intrinsic stochasticity of this
approach.

This is not a general feature of stochastic approaches, as in neural networks and boosted
regression trees the intrinsic stochasticity seems to be much less influential, and both
approaches yielded relatively consistent GDF values. The actual GDF estimate of course
depends on the settings of the methods and should not be interpreted as representative.

To compute the GDF for normally distribute data, we have to choose the strength of
perturbation. The GDF value is robust to this choice, unless many data points are dis-
turbed (Fig. 2). Only for BRT does increasing the strength of perturbation lead to a
consistent, but small, decrease in GDF estimates, suggesting again that BRTs fit into the
noise.



8 e S.HAUENSTEIN ET AL.

20 Gaussian 20 I Bernoulli 10 Sperm whale
18 18 ., "
o ® , v 8l
16 s : 16] }TT 1’ L s [ T
Bikiataazasess s I S 875027 i I
id : 14 RN R 8 N .
il " i GLM
20 30
4. | ' |
15 it Tl * P g | '
o 20 4 i 20 \ ' l {
10 .”f ‘ 18 i t
o ceddddbbbiditt ) 19 +J.“_
[a) +t 16
g . N 14 GAM
£
S 4 4 4
3
m 2 2 i
s ! . ; '
§ R ke ppapdiipraaieasl P it
S . e =5
[a)
'§ -4 =4 =4 randomForest
:E" 70 20 35
[}
5 esf.: . f
Oeoi:i;i;‘;';li"*‘} 15] 30|l
ssHLHI”H'HH} .'..'.-‘.".j.".'*..u'u. 25 i {
ER - " !
Bof 5 10 H‘l + by
20
45 '{'
i ; - ANN
40| 40,
44 .
38 38 . b R
& 36} 43.#'@-*"'4-.’} > L
aoliig o v i el pe”
AT sepgesh 34
i Y Tl
32 32
36
@ » BRT
T3 5 7 9 25 150 75 9 30 60 90 135 7510 50 90 130

data points perturbed simultaneously (k)

Figure 1. Models’ GDF as a function of the numbers of data points perturbed (k) (ranked abscissa) for the
simulated Gaussian (left), Bernoulli (center), and sperm whale data (right column) and the five model types
(rows). The filled black e and dark gray dots e represent the mean GDF for the two replications at each level
of k (in light-gray open dots o and black open dots o). The dashed line in the first row - - - - represents the
number of model parameters of the GLM.

Estimates of GDF for randomForest and ANN (but not BRT) respond with decreasing
variance to increasing the strength of perturbation. Increasing the intensity of perturbation
seems to overrule their internal stochasticity.

It seems clear from the results presented so far that no single best perturbation strength and
optimal proportion of data to perturb exists for all methods. For the following analyses, we
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Figure 2. Estimated GDF along an increasing numbers of perturbed data points (k) for the simulated
Gaussian data. For each k, there are 100 GDF replications computed with o = 0.1250y (0), 0 = 0.250y (0),
and o = 0.50, (), hence lower to higher perturbation magnitude. The dashed line - - - - represents the
model’s rank (GLM) and the sum of estimated degrees of freedom (GAM). N.B., the x-axis is rank-transformed.

use, for normal data, perturbation = 0.250,, and k = N (except for GAM, where k = 0.2N);
and for Bernoulli data k = 0.5N (except for BRT and ANN, where k = 0.04N).

3.2. Efficiency of GDF and cross-validation computations

Both GDF and cross-validation require multiple analyses. For the GDF, we need to run several
perturbations, and possibly replicate this many times. For cross-validation, we may also want
to repeatedly perform the 10-fold cross-validation itself to yield stable estimates. The mean
GDF and CV-log-likelihood (£cy) over 1-1,000 replicates are depicted in Fig. 3. With 100
runs, both estimates have stabilized, but 100 runs for GDF represent 25,000 model evaluations
(due to the k = 50 perturbations and 50 internal replicates for a dataset of N = 250), while
for 10-fold cross-validation these represent only 1,000 model evaluations, making it 25 times
less costly.

3.3. GDF-based AIC versus cross-validation

We analyzed four datasets with the above settings for GDF and cross-validation, two simulated
(Gaussian and Bernoulli) and two real-world datasets (sperm whale and red fox geographic
distributions).

Both generalized degrees of freedom (GDF,,) and cross-validation log-likelihood-
differences (A€SY) measure model complexity in an asymptotically equivalent way
(Section 1.2). For finite datasets both approaches yield identical rankings of model complexity
but are rather different in absolute value (Eq. (2)). Particularly the red fox-case study yields
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Figure 3. Development of mean generalized degrees of freedom (GDF, left) and cross-validation log-
likelihood-differences (A£SY, right) over 1,000 replicates (250,000 and 10,000 model runs, respectively).
GDF computation with kK = 50 data points perturbed per model run and 50 internal replicates for the
Gaussian simulation data (N = 250), i.e., 250 model evaluations per replicate. AZ,C”V derives from 10-fold
cross-validation, i.e., 10 model evaluations per replicate. The dashed lines display the mean GDF and A (Y,
respectively, of all replicates 4 one standard error.

very low GDF estimates for GLM, GAM, and randomForest, while their cross-validation
model complexity is much higher.

Model complexity is only one term in the AIC-formula (Eq. (8)) and for large datasets
the log-likelihood will dominate. To put the differences between the two measures of model
complexity into perspective, we computed AICgpr for all datasets and compared it to the
equivalent cross-validation deviance (—2{¢cy).

Across the entire range of datasets analyzed both approaches yielded extremely similar
results (Fig. 4, right). Within each dataset, however, the pattern is more idiosyncratic, reveal-
ing a high sensitivity to low sample size (N < 1,000, i.e., all datasets except the red fox).

3.4. GDF, AtSY, and model weights

For all four datasets, one modeling approach always substantially outperformed the others,
making model averaging an academic exercise. We compared model weights (according to
Egs. (11) and (12)) purely to quantify the differences in AICspr and cross-validation deviance
for model averaging. Only for the Bernoulli simulation was the difference noticeable (Table 1).
Here GLM and randomForest shared the model weight when quantified based on cross-
validation, while for the GDF approach GLM took all the weight.

4. Discussion

So far, Ye's (1998) generalized degrees of freedom concept did not attract much attention in
the statistical literature, even though it builds on established principles and applies to machine
learning, where model complexity is unknown. Shen and Huang (2006) have explored the
perturbation approach to GDF in the context of adaptive model selection for linear models
and later extended it to linear mixed effect models (Zhang et al., 2012). They also extended it
to the exponential family (including the Bernoulli distribution) and even to classification and
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regression trees (Shen et al., 2004). Our study differs in that the models considered are more

diverse and internally include weighted averaging, which apparently posed a challenge to the
GDF-algorithm.

4.1. GDF for normally distributed data

For normally distributed data, our explorations demonstrate a low sensitivity to the inten-
sity of perturbation used to compute GDE Furthermore, across the five modeling approaches
employed here, GDF estimates are stable and constant for different numbers of data points
perturbed simultaneously.

GDF estimates were consistent with the rank of GLM models and in line with the estimated
degrees of freedom reported by the GAM. For neural networks and boosted regression trees,

Table 1. Comparison of Akaike weights w,, and cross-validation weights w, (see Eq. (12)) for Gaussian and
Bernoulli simulation data and real-life sperm whale and red fox abundance data. The “surprisingly” good
performance of GLMs in the sperm whale case study remains unexplained, but is fully reproducible.

Model

w AIC 1w, v w AIC 1w, v
GAUSSIAN SIMULATION BERNOULLI SIMULATION
GLM 0.9998 0.9996 0.9762 0.4682
GAM 1.548 -10~* 4.390-10~% 4.310-10~% 5.185.1071
rF 1.407 - 10716 47721077 23191072 0.4960
ANN 1.158 - 107 2.632-107% 1.759 -10~* 3.578 1072
BRT 8.647-10°1 4.001-10716 4.131.10710 2.381.107°
SPERM WHALE RED FOX

GLM 0.9999 0.9997 0 0
GAM 1.373-107% 5.387-10710 0 0

rF 3.079-10~7 8.966-10~7 1 1

ANN 5.369 10" 6.558-107'8 0 0

BRT 7.473 .10 2.996 -10~° 0 0
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Table 2. Measures of model complexity (mean =+ standard deviation): Generalized degrees of freedom (GDF)
and AE,C,Y derived from cross-validation (see Section 1.2) for Gaussian and Bernoulli simulation data and real-
world sperm whale and red fox distribution data. The true ranks for the GLMs are 15, 15, 7, and 8, respectively.

v v
Model GDF ALy GDF ALy
GAUSSIAN SIMULATION BERNOULLI SIMULATION
GLM 15.1 4+ 0.30 16.7 + 1.97 145 £ 0.41 19.4 £+ 3.18
GAM 10.0 + 0.41 10.7 + 2.09 1.0 + 0.58 27.0 £ 3.82
randomForest —0.0 £ 033 2.8 + 2.67 —02 £ 04 13 £+ 210
ANN 58.7 £ 0.82 69.4 £+ 576 126 £ 0.25 121 £ 1.67
BRT 38.5 4+ 0.28 451 £+ 217 342 + 0.17 203 + 129
SPERM WHALE RED FOX

GLM 6.8 £ 0.24 72 + 140 79 4+ 0.38 374 + 13.02
GAM 19.2 £ 0.59 29.8 £+ 7.63 9.0 £ 021 371 £1037
randomForest —05+ 026 —11+ 266 11 4+ 5.83 317 £ 13.22
ANN 293 + 049 35.0 + 4.96 50.3 £+ 0.66 64.2 + 80.69
BRT 37.0 £ 017 26.0 + 129 59.0 + 0.12 54.6 + 2.30

GDF estimates appear plausible, but cannot be compared with any self-reported values. Com-
pared to the cross-validation method, GDF values are typically, but not consistently, lower by
10-30% (Table 2).

For randomForest, GDF estimates were essentially centered on zero. It seems strange to find
that an algorithm that uses hundreds of classification and regression trees internally to actually
have no (or even negative) degrees of freedom. We expected a low value due to the averaging
of submodels (called the “paradox of ensembles” by Elder, 2003), but not such a complete
insensitivity to perturbations. (Within this study, SH and CFD independently reprogrammed
our GDF function to make sure that this was not due to a programming error.) As Eq. (4)
shows, the perturbation of individual data points is compared to the change in the model
expectation for this data point, and then summed over all data points. To yield a GDF of
0, the change in expectation (numerator) must be much smaller than the perturbation itself
(denominator). This is possible when expectations are variable due to the stochastic nature
of the algorithm. It seems that randomForest is much more variable than the other stochastic
approaches of boosting and neural networks.

4.2. Bernoulli GDF

Changing the value of Bernoulli data from 0 into 1 (or vice versa) is a stronger perturbation
than adding a small amount of normal noise to Gaussian data. As our exploration has shown,
the GDF for such Bernoulli data are indeed much less well-behaved than for the normal data.
Not only is the estimated GDF dependent on the number of data points perturbed, also is
this dependence different for each modeling approach we used. This makes GDF computa-
tion impractical for Bernoulli data. As a consequence, we did not attempt to extend GDF in
this way to other distributions, as in our perception only a general, distribution-, and model-
independent algorithm is desirable.

4.3. GDF versus model complexity from cross-validation

Cross-validation is typically used to get a non-optimistic assessment of model fit (e.g.,
Hawkins, 2004). As we have shown, it can also be used to compute a measure of model com-
plexity similar (in principle) to GDF (Eq. (8) and Table 2). Both express model complexity
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as the effective number of parameters fitted in the model. GDF and cross-validation-based
model complexity estimator A¢SY are largely similar, but may also differ substantially (Fig. 4,
red fox case study). Since the “correct” value for this estimator is unknown, we cannot tell
which approach actually works better. Given our inability to choose the optimal number of
data points to perturb (except for GLM), we prefer A£SY, which does not make any such
assumption.

4.4. Remaining problems

To make the GDF approach more generally applicable, a new approach has to be found. The
original idea of Ye (1998) is appealing, but not readily transferable in the way we had hoped.

Another problem, even for Gaussian data where this approach seems to be performing fine,
is the high computational burden. GDF estimation requires tens of thousands of model eval-
uations, giving it very limited appeal, except for small datasets and fast modeling approaches.
Cross-validation, as alternative, is at least an order of magnitude faster, but still requires
around 1,000 evaluations. If the aim is to compute model weights for model averaging, no
precise estimation of model complexity is needed and even the results of a single K-fold cross-
validation based on Eq. (8) can be used. It was beyond the scope of this study to develop an
efficient cross-validation-based approach to compute degrees of freedom, but we clearly see
this as a more promising way forward than GDF.

4.5. Alternatives to AIC

The selection of the most appropriate statistical model is most commonly based on Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951), a measure representing the distance
between the true and an approximating model. Thus, we assume that model m, for which the
distance to the true model is minimal, is the KL-best model. Yet, since KL-discrepancy is not
observable, even if a true model existed, many statisticians have attempted to find a metric
approximation (e.g., Burnham and Anderson, 2002; Burnham et al., 1994). Akaike (1973),
who proposed this measure as the basis for model selection in the first place, developed the
AIC to get around the discussed problem.

The point of the cross-validated log-likelihood is that we do away with the approximation
that yields the degrees of freedom term in the AIC, instead estimating the model-dependent
part of the KL-divergence directly. This approach is disadvantageous if AIC can be computed
from a single model fit. But if the effective degrees of freedom (EDF) terms for the AIC would
require repeated model fits then there is no reason to use the AIC-approximation to the KL-
divergence, rather than a more direct estimator. If leave-one-out cross-validation is too expen-
sive, then we can leave out several data points, at the cost of some Monte Carlo variability
(resulting from the fact that averaging over all possible left-out sets is generally impossible).

Choosing the number of cross-validation folds, K, is a challenge and a frequently debated
issue. Many studies refer to Kohavi (1995), who proposed K = 10, even if the choice is not
limited by computational feasibility.

5. Conclusion

We have shown that the idea of using GDF to extend information-theoretical measures of
model fit (such as AIC) to non-likelihood models is burdened with large computational costs
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and yields variable results for different modeling approaches. Cross-validation is more vari-
able than GDE but a more direct way to compute measures of model complexity, fit, and
weights (in a model averaging context). As cross-validation may, but need not, employ the
likelihood fit to the hold-out, it appears more plausible for models that do not make likeli-
hood assumptions. Thus, we recommend repeated (> 100 times) K-fold cross-validation to
estimate any of the statistics under consideration.
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