
Appendix S8: Computing confidence distributions for

model-averaged predictions

Dormann et al.

March 27, 2018

1 Introduction
As the main document outlines, there are five different ways to compute confidence distributions for model-
averaged predictions. They differ in the assumptions they make, and the degree to which these assumptions
are likely to be violated.

Propagation Error-propagartion based confidence distributions build on the equations for Gaussian error
propagation (a.k.a. uncertainty propagation), with bias estimates added. This equation is ‘derived’ in
the paper, but essentially it is the combination of the rules for error propagation as found, e.g., on
wikipedia,1 and the equation defining MSE as sum of squared bias and variance (see main text). While
this equation doesn’t assume that the outcome is a normal distribution, we only have the first and second
moment of the confidence distribution thus derived. Hence, we use a normal distribution to represent
it.

Buckland Equation proposed by Buckland et al. (1997, see main text for citation and equation). This is
a simplification of the first approach, achieved by assuming perfect correlation between predictions.
While unlikely to be true, this is a conservative assumption, leading to wider confidence distributions
and a simpler equation. As for the first case, the outcome is not necessarily a normal distribution, but
we only have mean and variance for this distribution and hence represent it as a normal.
This approach’s theoretical justification has been criticised (see main text), and to our knowledge no
comparison with simulated data is available, so we do not know how generalisable our (supportive)
findings for this approach are.

Convolution The (weighted) sum of independent distributions is mathematically equivalent to a (weighted)
convolution. The convolution of normal distributions is again a normal distribution (and so for many
other simple cases). Since the assumption of independent distributions is virtually almost violated, this
approach will lead to confidence distributions that are (far) too narrow. Strongly discouraged.

Mixing Mixing describes the drawing from independent distributions according to their weight. It is essen-
tially a weighted overlay of the confidence distributions of the single models. The assumption likely
to be violated is that of independence of model predictions. For positively correlated model predic-
tions, this method should thus lead to overly conservative estimates. It is the only approach here that
(potentially) yields multi-model confidence distributions.

Full model When a full model is available, it is the preferred option for prediction of several statisticians
(e.g. Harrell 2001). While potentially overparameterised, it does not suffer from model selection bias
and distorted confidence distributions for its prediction. The full model can easily be build from var-
ious GLMs, but not across model types (e.g. a randomForest and a GAM). So, for mixing modelling
algorithms, no obvious full model exists.

1https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas

1

https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas

2 Computing confidence distributions for four linear model’s aver-
aged prediction

We start by simulating a small data set, fitting four inadequate models to it, use equal weights and construct
the model-averaged prediction’s confidence distributions according to the five methods above. (Thus, cover-
age estimation is conditional on equally-weighted models and will hence change with the actual weighting
scheme employed.)

set.seed(2)

N <- 70 # number of data points

Y <- rnorm(N, sd=1)

X <- as.data.frame(matrix(NA, ncol=20, nrow=N))

for (i in 1:20) X[,i] <- runif(N) # 20 uncorrelated predictors

colnames(X) <- paste0("X", 1:20)

X <- cbind(Y, as.data.frame(scale(X, scale=F))) # center all predictors

rm(Y)

fm1 <- lm(Y ~ 1, data=X)

fm2 <- lm(Y ~ ., data=X[, 1:6])

fm3 <- lm(Y ~ ., data=X[, c(1, 7:13)])

fm4 <- lm(Y ~ ., data=X[, c(1, 14:21)])

compute AIC-weights (as those were used by Fletcher/Turek):

AICs <- sapply(list(fm1, fm2, fm3, fm4), AIC)

round(w <- exp(0.5*AICs) / sum(exp(0.5*AICs)), 3)

[1] 0.002 0.006 0.003 0.989

for the sake of argument, let's assume equal weights for all four models:

w <- rep(0.25, 4)

Now we predict, with each model, to a single new data point.

newpoint <- as.data.frame(t(rep(.1, 20)))

colnames(newpoint) <- paste0("X", 1:20)

(preds <- lapply(list(fm1, fm2, fm3, fm4), predict, newdata=newpoint, se.fit=T))

[[1]]

[[1]]$fit

1

0.0271926

##

[[1]]$se.fit

[1] 0.1391161

##

[[1]]$df

[1] 69

##

[[1]]$residual.scale

[1] 1.163929

##

##

2

[[2]]

[[2]]$fit

1

0.02001059

##

[[2]]$se.fit

[1] 0.1673532

##

[[2]]$df

[1] 64

##

[[2]]$residual.scale

[1] 1.141219

##

##

[[3]]

[[3]]$fit

1

0.365974

##

[[3]]$se.fit

[1] 0.1820847

##

[[3]]$df

[1] 62

##

[[3]]$residual.scale

[1] 1.117693

##

##

[[4]]

[[4]]$fit

1

-0.08250375

##

[[4]]$se.fit

[1] 0.2209388

##

[[4]]$df

[1] 61

##

[[4]]$residual.scale

[1] 1.205489

We start by plotting these four distributions, over which we shall next be averaging.

cols <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

3

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

Now we come to the first method.

2.1 Propagation
For error propagation, we need to estimate several parameters, in particular bias and covariance between
predictions of the different models.

From the main text, the relevant equation is eqn 5, where we replace the correlation matrix-expression
with the equivalent covariance expression (eqn 4):

MSE(Ỹ) =

(
M

∑
m=1

wm

(
E(Ŷm)− y∗

))2

+
M

∑
m=1

M

∑
n=1

wmwncov(Ŷm,Ŷn) (1)

First, we bootstrap the analysis by the four models:

1. bootstrapping to compute elements of equation "eqn:varest":

if (!exists("bspred.mat")){
Nbs <- 500

bspred.mat <- matrix(NA, nrow=Nbs, ncol=4)

for (i in 1:Nbs){
Xbs <- X[sample(nrow(X), replace=T),]

fm1bs <- lm(Y ~ 1, data=Xbs)

fm2bs <- lm(Y ~ ., data=Xbs[, 1:6])

fm3bs <- lm(Y ~ ., data=Xbs[, c(1, 7:13)])

fm4bs <- lm(Y ~ ., data=Xbs[, c(1, 14:21)])

bspred.mat[i,] <- sapply(list(fm1bs, fm2bs, fm3bs, fm4bs), predict,

newdata=newpoint)

}
}

4

The question then is, what do we compute from the bootstrap, and what from the original data? We can
compare the estimates from the bootstrap with those from the data. Let’s see; bias from original data (note
that the weights enter here!):

predsMeans <- c(preds[[1]]$fit, preds[[2]]$fit, preds[[3]]$fit, preds[[4]]$fit)

(gamma <- predsMeans - predsMeans %*% w)

[1] -0.05547577 -0.06265777 0.28330566 -0.16517211

Note that the last term (predsMeans %*% w) is Ỹ .
Alternatively, we compute model misspecification bias as deviation of each bootstrapped prediction from

the mean of that bootstrap:

biasBS <- (bspred.mat - matrix(bspred.mat %*% w, ncol=4, nrow=nrow(bspred.mat)))

(gamma_m <- colMeans(biasBS)) # mean for each run of the bootstrap

[1] -0.05531237 -0.05942203 0.28163100 -0.16689661

sum(w*gamma_m)

[1] 3.469447e-18

In this case, the difference between computation from data and from bootstrap is negligible. For the estimation
we thus do not need the bootstrap.

Just to make this point explicit again: The “bias” estimated here is of course not the correct bias of the
models and the model average. We assume that the model average is unbiased (see also main text), and hence
use the individual models to compute what we hope is a good estimate of the truth. In real life, we have no
way of knowing how close to the actual truth this estimate is. (In our simulation we do, and we see that the
averaged estimate is indeed not the truth.)

Next, we need to estimate the variance of the prediction. Again, we can use the predictions from the linear
model (their squared standard error, to be precise), or the variance of the bootstrap.

estimate variance of prediction from prediction se:

(predsVars <- c(preds[[1]]$se.fit, preds[[2]]$se.fit, preds[[3]]$se.fit, preds[[4]]$se.fit)^2)

[1] 0.01935329 0.02800708 0.03315485 0.04881393

now from bootstrap:

(varY_m <- apply(bspred.mat, 2, var)) # from across the bootstraps

[1] 0.01981484 0.04109116 0.03655210 0.06207153

Again, estimates are similar, but now differences are larger than for the estimate of Ỹ . We expect for small
data sets bootstrap estimates to be less biased than their analytical counterparts. Also, we suggest using the
bootstrap in general, as non-parametric approaches do not provide analytical estimates for the standard error
of predictions.

The final parameters we need are the covariances (computed in either case from the bootstraps).

(COV <- cov(bspred.mat))

[,1] [,2] [,3] [,4]

[1,] 0.01981484 0.02203224 0.01765071 0.02415945

[2,] 0.02203224 0.04109116 0.02156726 0.02901665

[3,] 0.01765071 0.02156726 0.03655210 0.02054667

[4,] 0.02415945 0.02901665 0.02054667 0.06207153

the weights-weights matrix is:

ww <- tcrossprod(w)

5

With these ingredients, we can now compute the variance of model-averaged predictions according to uncer-
tainty propagation.

eqn 4 with data-based estimates:

(MSE <- (sum(w*gamma))^2 + sum(ww * COV))

[1] 0.02684222

eqn 4, using gamma_m from bootstrapped data:

(MSE_m <- (sum(w*gamma_m))^2 + sum(ww * COV))

[1] 0.02684222

So, overall these two estimates (one based on the observed data, one entirely on the bootstraps) are about the
same, simply because the bias isn’t very different and small relative to the covariances. We shall briefly plot
them for comparison, and then in the following use the wider variance, based on the bootstrap (in orange).

add this to the plot:

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

curve(dnorm(x, mean=predsMeans %*% w, sd=sqrt(MSE)), add=T, n=501, col="red", lwd=2)

curve(dnorm(x, mean=mean(bspred.mat %*% w), sd=sqrt(MSE_m)), add=T, n=501, col=cols[1], lwd=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

Thus, we proceed in general as follows: run bootstraps to compute the covariances. Compute weighted
average from model predictions directly. Then equation 5 (main text) is used to compute the MSE. (Note that
its first term is actually 0, as we use exactly this weighted sum of averages to estimate the truth, and hence
averaged model predictions are cancelling with individual model biases.)

6

2.2 Buckland et al.’s equation

Using the equation proposed by Buckland et al. (1997) is much simpler, as it does not require the covariances

to be estimated. The equation is varỸ =
(

∑m∈M wm
√

var(Ym)+ γ2
m

)2
. As in the previous case, we compute

model misspecification bias γm and predicted variances for each prediction from the data/fits. In the more
general case, both could as well be derived from bootstraps.

fits <- c(preds[[1]]$fit, preds[[2]]$fit, preds[[3]]$fit, preds[[4]]$fit)

vars <- c(preds[[1]]$se.fit^2, preds[[2]]$se.fit^2, preds[[3]]$se.fit^2, preds[[4]]$se.fit^2)

gamma <- fits - mean(fits %*% w)

sum(w*sqrt(vars + gamma^2))^2 # var according to Buckland et al.

[1] 0.05535392

This value is slightly higher than that of the previous method (0.043). Adding the Buckland et al. distribution
to the previous plot (omitting the non-bootstrapped uncertainty distribution):

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

curve(dnorm(x, mean(bspred.mat %*% w), sqrt(MSE_m)), add=T, n=501, col=cols[1], lwd=2)

curve(dnorm(x, mean(fits %*% w), sum(w*sqrt(vars + gamma^2))), add=T, n=501, col=cols[2], lwd=2)

legend("topright", bty="n", col=cols[1:2], legend=c("propagation", "Buckland"), lwd=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

propagation
Buckland

Omitting the information on the correlation of predictions, and assuming them to be perfect, yields a wider
confidence distribution for the Buckland et al. approach than for the uncertainty propagation.

2.3 Convolution

Making the liberal assumption of independence of predictions (which we have already seen in the first method
to be violated), we could compute a new normal distribution based on the convoluted contributing four normal

7

confidence distributions (see main text for details).

(meanConv <- c(preds[[1]]$fit, preds[[2]]$fit, preds[[3]]$fit, preds[[4]]$fit) %*% w)

[,1]

[1,] 0.08266836

(sdConv <- sqrt(sum(w^2*c(preds[[1]]$se.fit, preds[[2]]$se.fit, preds[[3]]$se.fit,

preds[[4]]$se.fit)^2)))^2

[1] 0.008083073

We squared the last line to get the variance estimate, comparable with the 0.043 of the propagation and
the 0.055 of Buckland et al.’s approach. This is clearly much narrower, indicating the effect of ignoring the
positive correlation among predictions. Let’s put the convolution into the plot:

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

curve(dnorm(x, mean(bspred.mat %*% w), sqrt(MSE_m)), add=T, n=501, col=cols[1], lwd=2)

curve(dnorm(x, mean(fits %*% w), sum(w*sqrt(vars + gamma^2))), add=T, n=501, col=cols[2], lwd=2)

curve(dnorm(x, meanConv, sdConv), add=T, n=501, col=cols[3], lwd=2)

legend("topright", bty="n", col=cols[1:3], legend=c("propagation", "Buckland", "convolution"), lwd=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

propagation
Buckland
convolution

As expected, the convolution yields a much narrower confidence distribution, not including the mean of the
right-most model prediction at all, and barely the left-most. This suggests that the convolution will have too
narrow confidence intervals, as confirmed by the simulation in the main text.

2.4 Mixing of confidence distributions

Technically, mixing is the easiest way to compute the confidence distribution of the averaged prediction. It is
simply the weighted overlay of the individual models, realised by brute-force repeated drawing. We can then

8

immediately draw the result as a density plot.

draws <- 1E5 # a large number of draws across all models

mix <- as.vector(sapply(1:4, function(i) rnorm(round(w[i]*draws), preds[[i]]$fit, preds[[i]]$se.fit)))

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

curve(dnorm(x, mean(bspred.mat %*% w), sqrt(MSE_m)), add=T, n=501, col=cols[1], lwd=2)

curve(dnorm(x, mean(fits %*% w), sum(w*sqrt(vars + gamma^2))), add=T, n=501, col=cols[2], lwd=2)

curve(dnorm(x, meanConv, sdConv), add=T, n=501, col=cols[3], lwd=2)

lines(density(mix), col=cols[4], lwd=2)

legend("topright", bty="n", col=cols[1:4], legend=c("propagation", "Buckland", "convolution",

"mixing"), lwd=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

propagation
Buckland
convolution
mixing

A pleasing feature of mixing is that it relaxes the assumption that the resulting distribution is normal. We
had to make this (or another) assumption for the previous cases, as we only estimate mean and variance for
each approach. Relying on the Central Value Theorem we hoped that the resulting distribution would be best
described by a normal. Mixing allows the confidence distribution to be entirely driven by the contributing
distributions, and have any shape, including multi-modality.

2.5 Full model predictions

When a full model exists, we can add its prediction’s confidence distribution to the choir. In the present simple
situation, the full model does exist, while when using very different model types, it may not (see further below
for such a case).

fmfull <- lm(Y ~ ., data=X) # use all predictors simultaneously

predfull <- predict(fmfull, newdata=newpoint, se.fit=T)

9

par(mar=c(4,4,1,1))

plot(1, 1, xlim=c(-0.6, 1), ylim=c(0, 4.4), type="n", las=1, xlab=expression(widehat(Y)),

ylab="prediction density")

abline(v=0, lwd=2, col="grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit), add=T, n=501, col="grey20", lty=2)

curve(dnorm(x, mean(bspred.mat %*% w), sqrt(MSE_m)), add=T, n=501, col=cols[1], lwd=2)

curve(dnorm(x, mean(fits %*% w), sum(w*sqrt(vars + gamma^2))), add=T, n=501, col=cols[2], lwd=2)

curve(dnorm(x, meanConv, sdConv), add=T, n=501, col=cols[3], lwd=2)

lines(density(mix), col=cols[4], lwd=2)

curve(dnorm(x, predfull$fit, predfull$se.fit), add=T, n=501, col=cols[5], lwd=2)

legend("topright", bty="n", col=cols[1:5], legend=c("propagation", "Buckland", "convolution",

"mixing", "full model"), lwd=2)

−0.5 0.0 0.5 1.0

0

1

2

3

4

Y

pr
ed

ic
tio

n
de

ns
ity

propagation
Buckland
convolution
mixing
full model

The full model’s prediction distribution is shifted noticeably to the right. It is also slightly wider than the
Buckland et al. approach. Since the full model is unbiased (under repeated sampling, and only if all true
predictors are in the model), it should at least include the true value of 0 in 95% of repetitions in its 95%
confidence interval. For this single run, truth is certainly within that interval of this and all other methods.
It requires repeated simulations, and possibly a less trivial data simulation with actual effects of X on Y , to
evaluate the coverage of each method.

3 An R helper function for four methods (not the full model)
Before we turn to repeated simulations, we can define a helper function for the first four approaches presented
above. The full model is not part of this function.

The function accepts, as input, predictions, weights, standard errors of predictions and bootstrap estimates
of predictions. It returns a function, which can be used to compute the density for each prediction value. here
is an illustration.

predictMA <- function(Preds, weights, type, PredsSE = NULL, N = 1e+05,

PredsBS = NULL) {
function to compute confidence distributions from averaged

10

predictions if used for non-normal data, all data have to

be provided AT THE LINK SCALE!

if (length(Preds) != length(weights))

stop("The number of models in preds is different from the number of weights.")

if (type == "propagation") {
if (is.null(PredsBS))

stop("Please provide matrix with bootstrap estimates for Preds from each model

(at least 500)!")

ww <- tcrossprod(weights)

we estimate model misspecification bias gamma as the

weighted mean bias of model predictions:

gamma_m <- as.vector(Preds %*% w) # mean for each run of the bootstrap

estimate variance of prediction from bootstrap:

COV <- cov(PredsBS) # from across the bootstraps

now fill in eqn 5, using gamma_m from bootstrapped data!:

MSE <- (sum(weights * gamma_m))^2 + sum(ww * COV)

out <- function(x) dnorm(x, mean = mean(PredsBS %*% weights),

sd = sqrt(MSE))

}
if (type == "Buckland") {

vars <- PredsSE^2

gamma <- Preds - as.vector(Preds %*% weights) # model misspecification bias

varBuckland <- sum(weights * sqrt(vars + gamma^2))^2 # var according to Buckland et al.

out <- function(x) dnorm(x, mean = mean(Preds %*% weights),

sd = sqrt(varBuckland))

}
if (type == "mixing") {

warning("You requested mixing. At present, this function assumes your predictions

are AT THE LINK SCALE and normally distributed.")

mix <- unlist(sapply(seq_along(Preds), function(i) rnorm(round(N *

weights)[i], mean = Preds[i], sd = PredsSE[i])))

dx <- density(mix, n = N/20)

out <- approxfun(dx)

}
if (type == "convolution") {

warning("You requested a convolution. At present, this function assumes your

predictions are normally distributed.")

if (is.null(PredsSE))

stop("For convolution, please provide estimates for the prediction standard

error of each prediction, akin to preds).")

meanconv <- Preds %*% weights

vars <- redsSE^2# c(preds[[1]]£se.fit^2,

preds[[2]]£se.fit^2, preds[[3]]£se.fit^2,

preds[[4]]£se.fit^2)

sdconv <- sqrt(sum(weights^2 * PredsSE^2))

out <- function(x) dnorm(x, mean = meanconv, sd = sdconv)

}
return(out)

}
and now apply it:

11

Preds <- sapply(preds, function(x) x[[1]])

PredsSE <- sapply(preds, function(x) x[[2]])

weights <- w

PredsBS <- bspred.mat

cols <- c("coral", "chartreuse4", "cornflowerblue", "darkorchid2")

xseq <- seq(-1, 1, len = 300) # sequence along which to plot the confidence distribution

par(mar = c(2, 0.035, 1, 1), family = "sans")

plot(1:2, 1:2, type = "n", col = cols[1], xlim = c(-0.5, 1),

ylim = c(0, 3), las = 1, xlab = "", ylab = "")

abline(v = 0, lwd = 2, col = "grey") # there is no effect of any X!

for (i in 1:4) curve(dnorm(x, preds[[i]]$fit, preds[[i]]$se.fit),

add = T, n = 501, col = "grey20", lty = 2)

propagPred.fun <- predictMA(Preds, weights, PredsSE = PredsSE,

type = "propagation", PredsBS = PredsBS)

lines(xseq, propagPred.fun(xseq), type = "l", col = cols[1],

lwd = 1.5)

BuckPred.fun <- predictMA(Preds, weights, PredsSE = PredsSE,

type = "Buckland")

lines(xseq, BuckPred.fun(xseq), type = "l", col = cols[2], lwd = 1.5)

mixPred.fun <- predictMA(Preds, weights, PredsSE = PredsSE, type = "mixing")

Warning in predictMA(Preds, weights, PredsSE = PredsSE, type = "mixing"): You requested mixing.

At present, this function assumes your predictions

are AT THE LINK SCALE and normally distributed.

lines(xseq, mixPred.fun(xseq), type = "l", col = cols[3], lwd = 1.5)

fullpred <- predict(fmfull, newdata = newpoint, se.fit = T)

curve(dnorm(x, mean = fullpred$fit, sd = fullpred$se.fit), type = "l",

col = cols[4], lwd = 1.5, add = T)

legend("topright", bty = "n", col = cols[1:4], legend = c("propagation",

"Buckland", "mixing", "full model"), lwd = 1.5)

12

−0.5 0.0 0.5 1.0

propagation
Buckland
mixing
full model

4 Computing coverage of all five approaches
Using a slight modification of the simulation above, we here repeat the procedure 1000 times and assess the
proportion of times the true value was in the 95% confidence interval of each method. If these work out to be
95%, then the nominal coverage is equal to the actual coverage.

The simulation contains again 70 data points, 20 predictors (half of them with a coefficient of −1, the
other with one of 1), and the four models are different levels of model simplification (with penalisation
factors for the stepwise selection of k = 0.2,0.5,2 and 4, where 2 is the AIC. Weights are based on AIC,
simply because this is the most common approach in the literature to date. It would be simple to change that
to any other approach outlined in the main text.

Note that the evaluation of this code takes several hours, and we hence provide the output of our simulation
alongside the code.

R <- 1000

var.mat <- quant.mat <- matrix(NA, nrow=R, ncol=5) # variance and quantile of truth

nobias.quant.mat <- quant.mat # for the hypothetical case of unbiased model averages

model.estimates.mat <- matrix(NA, nrow=R, ncol=6) # models' point predictions

colnames(model.estimates.mat) <- c("fm1", "fm2", "fm3", "fm4", "fmfull", "avg")

colnames(var.mat) <- colnames(quant.mat) <- c("propagation", "Buckland", "convolution",

"mixing", "full model")

cols <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")

from color-blind scheme

verbose=F

for (r in 1:R){

13

set.seed(r)

N <- 70 # number of data points

X <- as.data.frame(matrix(NA, ncol=20, nrow=N))

for (i in 1:20) X[,i] <- runif(N) # 20 more or less uncorrelated predictors

colnames(X) <- paste0("X", 1:20)

X <- as.data.frame(scale(X, scale=F)) # center all predictors

Y <- 1 + as.matrix(X) %*% rep(c(-1,1), 10) + rnorm(N, sd=1)

dats <- cbind(Y, X)

rm(X, Y)

fm1 <- step(lm(Y ~ ., data=dats), k=0.2, trace=F)

fm2 <- step(fm1, k=0.5, trace=F)

fm3 <- step(fm2, k=2, trace=F)

fm4 <- step(fm3, k=4, trace=F)

fmfull <- lm(Y ~ ., data=dats)

compute AIC-weights (as those were used by Fletcher/Turek):

AICs <- sapply(list(fm1, fm2, fm3, fm4), AIC)

round(w <- exp(0.5*AICs) / sum(exp(0.5*AICs)), 3)

newpoint <- as.data.frame(t(rep(.1, 20))) # a single point of evaluation

colnames(newpoint) <- paste0("X", 1:20)

preds <- lapply(list(fm1, fm2, fm3, fm4), predict, newdata=newpoint, se.fit=T)

predAvg <- sapply(list(fm1, fm2, fm3, fm4), predict, newdata=newpoint, se.fit=F) %*% w

model.estimates.mat[r,] <- unlist(c(lapply(list(fm1, fm2, fm3, fm4), predict,

newdata=newpoint, se.fit=F), predict(fmfull, newdata=newpoint), predAvg))

truth <- 1 + as.matrix(newpoint) %*% rep(c(-1,1), 10)

bootstrap for estimating ingredients for var-est-formula:

Nbs <- 500

bspred.mat <- matrix(NA, nrow=Nbs, ncol=4)

for (i in 1:Nbs){
Xbs <- dats[sample(nrow(dats), replace=T),]

fm1bs <- lm(Y ~ 1, data=Xbs)

fm2bs <- lm(Y ~ ., data=Xbs[, 1:6])

fm3bs <- lm(Y ~ ., data=Xbs[, c(1, 7:13)])

fm4bs <- lm(Y ~ ., data=Xbs[, c(1, 14:21)])

bspred.mat[i,] <- sapply(list(fm1bs, fm2bs, fm3bs, fm4bs), predict,

newdata=newpoint)

}
now compute model misspecification bias as deviation of each prediction from the mean:

biasBS <- (bspred.mat - matrix(bspred.mat %*% w, ncol=4, nrow=Nbs))

we estimate model misspecification bias gamma as the mean bias (colMeans(bias)):

gamma_m <- colMeans(biasBS) # mean across bootstraps

Compute "bias" on ORIGINAL predictions:

(Note that this is not the actual bias, because truth is unknown in real life.)

14

gamma_m <- sapply(list(fm1, fm2, fm3, fm4), predict, newdata=newpoint) - rep(predAvg, 4)

the covariance term in eqn 4 is:

COV <- cov(bspred.mat)

ww <- tcrossprod(w)

now fill in eqn 1 of this document, using gamma_m from bootstrapped data!:

MSE <- (sum(w * gamma_m))^2 + sum(ww*COV)

(Note that since we assume the model average is unbiased, the first term is actually 0.)

store var and compute 95%CI, using as model average the ORIGINAL model predictions:

var.mat[r, 1] <- MSE

quant.mat[r, 1] <- pnorm(truth, mean=predAvg, sd=sqrt(MSE)) #old: bs.means: mean(bspred.mat %*% w)

now assume that averaged predictions were unbiased (which of course we could never

know in real life):

gamma_m <- sapply(list(fm1, fm2, fm3, fm4), predict, newdata=newpoint) - rep(truth, 4)

MSE <- (sum(w * gamma_m))^2 + sum(ww*COV)

nobias.quant.mat[r, 1] <- pnorm(truth, mean=predAvg, sd=sqrt(MSE))

2. Buckland et al. correction:

fits <- c(preds[[1]]$fit, preds[[2]]$fit, preds[[3]]$fit, preds[[4]]$fit)

vars <- c(preds[[1]]$se.fit^2, preds[[2]]$se.fit^2, preds[[3]]$se.fit^2,

preds[[4]]$se.fit^2)

gamma <- fits - rep(predAvg, 4)

varBuckland <- sum(w*sqrt(vars + gamma^2))^2 # var according to Buckland et al.

var.mat[r, 2] <- varBuckland

quant.mat[r, 2] <- pnorm(truth, predAvg, sqrt(varBuckland))

now assume that averaged predictions were unbiased (which of course we could never

know in real life):

gamma <- fits - rep(truth, 4)

varBuckland <- sum(w*sqrt(vars + gamma^2))^2

nobias.quant.mat[r, 2] <- pnorm(truth, mean=predAvg, sd=sqrt(varBuckland))

3. convolution as sum of independent normals:

var.mat[r, 3] <- sum(w^2*c(preds[[1]]$se.fit^2, preds[[2]]$se.fit^2,

preds[[3]]$se.fit^2, preds[[4]]$se.fit^2))

quant.mat[r, 3] <- pnorm(truth, mean(c(preds[[1]]$fit, preds[[2]]$fit, preds[[3]]$fit,

preds[[4]]$fit) %*% w), sqrt(sum(w^2*c(preds[[1]]$se.fit^2,

preds[[2]]$se.fit^2, preds[[3]]$se.fit^2, preds[[4]]$se.fit^2))))

now assume that averaged predictions were unbiased (which of course we could never

know in real life):

(does not apply, as there is no bias-correction involved!)

nobias.quant.mat[r, 3] <- quant.mat[r, 3]

4. mixing = overlay

15

howOften <- round(w*400000) # draw a lot of times ...

mix <- as.vector(sapply(1:4, function(i) rnorm(howOften[i], preds[[i]]$fit,

preds[[i]]$se.fit)))

var.mat[r, 4] <- var(unlist(mix))

#quant.mat[r, 4] <- ecdf(unlist(mix))(truth) # from mix, approximated

quant.mat[r, 4] <- w[1] * pnorm(truth, preds[[1]]$fit, preds[[1]]$se.fit) +

w[2] * pnorm(truth, preds[[2]]$fit, preds[[2]]$se.fit) +

w[3] * pnorm(truth, preds[[3]]$fit, preds[[3]]$se.fit) +

w[4] * pnorm(truth, preds[[4]]$fit, preds[[4]]$se.fit) # "analytical" estimate

now assume that averaged predictions were unbiased (which of course we could never

know in real life):

(does not apply, as there is no bias-correction involved!)

nobias.quant.mat[r, 4] <- quant.mat[r, 4]

5. full model:

predfull <- predict(fmfull, newdata=newpoint, se.fit=T)

var.mat[r, 5] <- predfull$se.fit^2

quant.mat[r, 5] <- pnorm(truth, mean=predfull$fit, sd=predfull$se.fit)

now assume that averaged predictions were unbiased (which of course we could never

know in real life):

(does not apply, as there is no bias-correction involved!)

nobias.quant.mat[r, 5] <- quant.mat[r, 5]

print(r)

#save(model.estimates.mat, var.mat, quant.mat, nobias.quant.mat, file="coverageSimu.Rdata")

}

load("coverageSimu.Rdata")

round(head(quant.mat), 3)

propagation Buckland convolution mixing full model

[1,] 0.377 0.400 0.346 0.394 0.429

[2,] 0.012 0.052 0.006 0.053 0.057

[3,] 0.075 0.156 0.024 0.160 0.285

[4,] 0.002 0.008 0.000 0.010 0.016

[5,] 0.819 0.760 0.913 0.759 0.780

[6,] 0.062 0.117 0.019 0.121 0.169

First, we may want to have a look at the predictions, across the 1000 repetitions.

par(mar=c(4,4,1,1))

boxplot(model.estimates.mat, col="grey", border="grey60", whisklty=1, pch=1,

medcol="grey20", las=1, ylab="prediction estimate")

16

fm1 fm2 fm3 fm4 fmfull avg

0.0

0.5

1.0

1.5

2.0

pr
ed

ic
tio

n
es

tim
at

e

On average, all six ways to predict yield the same mean (which correctly lies on 1, indicating that all methods
are unbiased). Variance is slightly reduced in the full model, while averaging yields no obvious benefit for
the estimate in terms of spread.

Let’s look at the actual coverage.

#summary(quant.mat)

(coverage <- apply(quant.mat, 2, function(x) sum(x < 0.975 & x > 0.025))/nrow(quant.mat))

propagation Buckland convolution mixing full model

0.792 0.894 0.681 0.905 0.941

titles <- c("propagation", "Buckland", "convolution", "mixing", "full model")

par(mfrow=c(1,5), mar=c(4,2,1,1), oma=c(0, 4, 0, 0))

for (i in 1:5){
hist(quant.mat[,i], col="grey", border="white", main="", freq=F, las=1, xlab="",

breaks=seq(0, 1, by=0.05), ylab="")

polygon(x=c(0, 1, 1, 0), y=c(0, 0, 1, 1), col="grey30", border="transparent")

hist(quant.mat[,i], col="grey", border="white", main="", freq=F, las=1, xlab="", ylab="",

breaks=seq(0,1,by=0.05), add=T)

mtext(titles[i], side=3, line=-2, font=2)

mtext(paste0(coverage[i]*100, "%"), side=1, line=-1.0, at=0.55, font=2, cex=1)

if (i==3) mtext("cumulative distribution at true value", side=1, line=3, font=1)

if (i==1) mtext("density", side=2, line=3, font=2)

}

17

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

propagation

79.2%

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

Buckland

89.4%

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

convolution

68.1%

cumulative distribution at true value

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5
mixing

90.5%

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2 full model

94.1%

In this simulation, the full model alone has the nominal coverage: in 95% of the cases is the truth in the
95% confidence interval. Mixing is a very close second, followed by Buckland et al.’s correction formula.
Uncertainty propagation is too narrow, covering the truth in only 80% of cases, while convolution is clearly
unacceptable.

The reason for the poor performance of eqn 5-based error propagation is the estimation of bias. Equation
5 assumes that bias is known, and we approximate that by assuming that the averaged prediction is unbiased
(see main text, section 2.4, point 1 in the final list of options). If it isn’t, this is what we get.

Apparently, Buckland et al.’s approach, which is weird in its derivation, has much less of a problem with
this. (Note on “weird”: Their equation 6 is clearly wrong. It states that their estimator for the variance of the
prediction by model k depends on the truth, whereas in their eqn 5 it correctly depended on the prediction
mean. The variance of an estimator describes just that: the variance of the estimator around the estimate, but
not around the truth. The latter would be quantified by the MSE, not the variance. Their eqn 6 - 9 should refer
instead to the mean squared error of the estimator, not the variance of the estimator.)

In a similiar way, we could investigate how the methods would fare IF (big if) the model average was
unbiased. Remember, we don’t know the truth in real life, so there we can never make this analysis. Also note
that only ”error propagation” and ”Buckland” have a term specifying model bias; hence only these two will
look different to the previous analysis.

(coverage <- apply(nobias.quant.mat, 2, function(x) sum(x < 0.975 & x > 0.025))/nrow(nobias.quant.mat))

[1] 1.000 1.000 0.681 0.905 0.941

Unsurprisingly, setting the bias-correction to the correct term makes all predictions to fall into the 95%
quantiles of the uniform distribution, the predictions have “full” coverage (not only the intended nominal
coverage). This only means that both methods would work if the truth was known (an academic point).

18

	Introduction
	Computing confidence distributions for four linear model's averaged prediction
	Propagation
	Buckland et al.'s equation
	Convolution
	Mixing of confidence distributions
	Full model predictions

	An R helper function for four methods (not the full model)
	Computing coverage of all five approaches

