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Abstract Ecology,much like any other discipline, has its fashions and fads, and each brings
its own buzzwords and jargon. “Network ecology” is an example of such a fashion, which
has for a few decades imprinted heavily on ecological publications. However, the topics
of network ecology are of course much older, as are most of its methods. This invites the
question whether network ecology is on a good path to providing di�erent viewpoints and
new insights. I here try to outline a somewhat opinionated view of why there is a high risk
that this avenue of researchmay prove to be a cul-de-sac, for two reasons. On the one hand,
theword “network”has become an emptybuzzword voidof speci�cmeaning.On theother,
there are six problems that I deem to be “deal breakers” in research on interaction networks:
unless they all are resolved, this approach cannot make meaningful contributions. They
are: (�) sampling bias; (�) ecological meaning of recorded interactions; (�) data aggregation
over individuals; (�) lack of quantitative expectation; and (�) ecologically meaningless
indices. Together they lead to the biggest problem (�) confusion in what it all means
ecologically. Until these issues are being tackled by improved �eld and computational
research, there seem to be little progress possible in our understanding of assemblages of
interacting species under the header of “network ecology”.

�.� Introduction

Whenmany scientists work on a more or less well-de�ned topic, it is called a “�eld” of that
discipline. In ecology, the pre�x “network” has been used, in the same spirit as “landscape”
or “animal” or “movement” ecology to de�ne one such �eld. We can usefully de�ne
“network ecology” as a sub�eld of community ecology,which focusses, largely or exclusively,
on endogenous processes, i.e. those among its members, rather than on the environment
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(such exogenous e�ects would still be covered in community ecology).� And similar to these
other examples, it is worth questioning whether the focus of this sub�eld has contributed
to our understanding of ecological topics more widely. Has “landscape ecology” led to
myopia with respect to smaller-scale processes? Do principles of “animal ecology” not
apply similarly to plants? Are there questions unique to “movement ecology”, or only
methods? Or, to paraphrase Monty Python: “What has network ecology ever done for
us?”

In the end, we study the relationship of organisms to their environment and to each
other in order to understand their abundance and distribution (merging the de�nitions of
Haeckel ����, p. ���, and Andrewartha ����). Any speci�c �eld is to some extent only a
means to that end. If network ecology lets us see why a species is here or not, or why one
species is common and another is not, why one species has a higher population growth
rate or lower mortality than another, great. If, however, it only shows patterns in some
indices that do not link back to understanding the ultimate ecological questions, then
what’s the ecological point?

The question for network ecology is even more relevant, as most topics have already
a home in ecology: community ecology, macroecology and food web ecology. (We shy
away from questioning the validity of these �elds here.) Who interacts with whom is the
subject of community ecology, as founded by the seminal books on the topic in ���� and
���� (Cody and Diamond ����; Diamond and Case ����), but has been followed ever
since (Gee and Giller ����; Lawton ����; Carson and Schnitzer ����; McPeek ����). These
books feature loop analyses, interaction matrices, connectance and even nestedness before
network ecology was a thing. It is only fair to ask, then, what de�nes network ecology and
whether such a �eld is progressing the �eld more than community ecology has done in the
last �� or so years.

The majority of current studies investigate interactions between two guilds, such as
pollinators and the �owers they visit, described by a two-mode or bipartite network.�
However, these can be layered (multiple locations, times) or stacked (tripartite networks).
When doing so, they become more like a very selective section of a food web, focussing on
what is measurable by a prede�ned method, or possibly a speci�c ecological hypothesis
involving only this subset of species. When such networks are arranged along gradients
(say of altitude or aridity), the exogenous drivers may well dominate community assembly,
and community ecology in the wider sense may o�er a more comprehensive set of theories
and tools (see references cited above).

On the next few pages I want to focus on some known problems in network ecology,
which researchers in this�eld are happy to ignore. I selected those I consider “deal breakers”,
i.e. so grave that without a solution no progress can be made. Indeed, I would argue that

�This de�nition is consistent with the wayMcCann andGellner (����) re-interpret “Theoretical Ecology”,
as well as a non-representative poll among participants of a workshop on networks in ����.
� I write this based on my experience as maintainer of the R-package bipartite (Dormann et al. ����),
which computes a range of network indices, alongside null models and some visualisation, for bipartite
networks, andmay hence have a biased view on the �eld.What started as a service to the network ecological
community has turned into some fruitful and amuch larger set of fruitless collaborations.Many questions
I received were caused by misunderstanding what a network index may mean, or how it relates to a speci�c
question. Others were naive, assuming that analysing networks invariably will yield interesting answers.
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without solutions virtually all previous and current research is void and immaterial, as we
have no way of knowing whether it is correct or not. As a theoretical physicist may quip,
citingWolfgang Pauli, network ecology may be “not even wrong”. I will start, however,
with a re�ection of why ecological networks are di�erent to networks in other disciplines,
and that this di�erence matters for the successful application of a network approach.

�.� Which paths did network ecology open for community ecology?

Claims that network ecology has yielded new insights abound (e.g. Guimarães Jr et al. ����;
Fortin et al. ����; Bascompte and Jordano ����; Delmas et al. ����), but are they correct?
That is, are network ecological breakthroughs actually related largely to interactions within
a community?

Outside ecology, “network theory” has been applied to power grids, transport con-
nections, metabolic interactions and brain networks, aiming at identifying vulnerable or
particularly important parts (e.g. Crucitti et al. ����; Wang et al. ����; Guimerà and Ama-
ral ����; Bullmore and Sporns ����; Guimerà et al. ����). In all these cases, the networks
exist to achieve a speci�c goal: provide a steady supply of electricity, connect cities, a�ect
a speci�c enzyme reaction, or excite neurons belonging to the same task, respectively. It
is much less clear, what the “network” in a pollinator-�ower network is, what is �owing
between nodes, and what actually constitutes the network.

The situation of ecological interaction networks is more similar to the other large group
of network studies: social networks. What is the function of the actor-movie network
(Peltomäki and Alava ����) or the supervisory board member-company network (Harris
and Helfat ����)? While we may be able to identify a central actor or CEO, extract power-
laws of degrees, in which way does that represent a scienti�c advance over a classical
ordination?

If there are electricity, carbon, consumables �owing in a network, then a shortest path,
for example, is a useful information for optimising energy use. In the case of (bipartite)
pollination networks, such �ux is only between plants connected by the same individual
pollinator; pollen isn’t deposited, then picked up by another pollinator to be carried over
to the next �ower and so forth. Similarly, screen time of an actor in one movie does not
“�ow” to another movie, just because the cast is similar. The analogy occasionally invoked
by network ecologists to power grids and brain networks is not obvious, if it exists at all.

If a power grid node is a “hub” then that means many power lines enter and get re-
distributed. Any fault in that hub a�ects in an obvious way lower-order power nodes.
What, then, is a hub in a pollination network (Olesen et al. ����)? Will the network fail
in whatever it does when a hub-species is lost? No, it will not. A hub pollinator is simply
so generalised that it visits �owers that otherwise are predominantly visited by specialists,
thereby “connecting” the network graph, but no ecological functions. An attractive �ower
may well provide resources to many visitors, but that does not mean it “connects” them
in any ecologically obvious way.� The analogy of a network is simply meaningless. (That

� If anything, it would suggest that pollinators may be competing for this resource, which would stretch
the meaning of “connect” beyond recognisability.
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is not to say that there aren’t keystone or foundation species, but those are not the ones
identi�ed by this network approach.)

So, in the following, we audit a few subjectively selected claims of “network-ecological
insight”, by (a) investigating what is speci�cally “networky” about that insight, and (b)
whether that insight is actually ecological and not merely describing an abstract analogy
without representation in ecology (such as the “hub species”). No representative or even
comprehensive review is aimed for, but merely an illustration of the point that most
“network” texts are full comprised by traditional ecological, non-network research, and/or
do not demonstrate that an “endogenous processes only”-approach would approximate
well community ecology.

�.�.� Claim: Network motifs reveal something new
Losapio et al. (����) stated that “The over-representation of network motifs is positively
linked to species diversity globally” (p. �). The motifs they investigate, in interactions in
alpine plant communities, are competition and facilitation among sets of three species.
That is, plants may all three compete with each other, some with some but facilitate others,
or, at the other end of motifs, all facilitate each other. Since some con�guration do not
lead to coexistence (e.g. intransitive hierarchies), they �nd some motifs more often then
others.

True to our de�nition of “network ecology”, the scope and approach of this paper
is entirely on endogenous interactions. However, there is no detectable element in this
paper that warrants or bene�ts from relabelling competitive interactions as “network
analyses”. No attempt is being made to explain what is being shared in such a network,
or what theoretical expectation would be based in a network-speci�c theory. Also, no
demonstration is given that motifs yield a better description or access to an ecological
process than traditional competition/facilitation perspectives.

My point: nothing is gained by using the term “network” in this paper – apart from
access to a high-ranking journal.

�.�.� Claim: Networks more useful for conservation than a focus on
species

Harvey et al. (����) claim that “a shift in focus from species to interaction networks is
necessary to achieve pressing conservation management and restoration ecology goals of
conserving biodiversity, ecosystem processes and ultimately landscape-scale delivery of
ecosystem services” (p. ���). They do not provide quantitative evaluations of studies or
experiments as evidence in this commentary piece, rather a narrative based on ownprevious
studies and hand-picked anecdotes.

Most interesting to my point are the arguments they �nd for arguing that networks are
useful. In my reading, all such arguments are based on using “network” as synonym for
“analysis of interactions”. For example, a study they cite prominently notes that loss of hosts
are driving local extirpation of butter�ies; no network quanti�cation or theory involved.
Of course, the largest driver of species extirpation is loss of habitat, i.e. a non-network cause.
A “network approach” would thus de�nitely be too narrow. Indeed, it seems strange to
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argue that a focus on endogenous processes (the network approach) ismore comprehensive
than a traditional community approach, which does include exogenous processes.

All of their arguments may be valid, but replacing a narrow “species-centric” approach
by one that ignores exogenous drivers (implied by a “network approach”) will get conser-
vation biology from the �re into the frying pan.

�.�.� Claim: Networks reveal community processes across spatial scales
Galiana et al. (����) report that for interaction networks of various types several character-
istics scale as power law with spatial scale, but the number of interactions per species does
not.

While this pattern is intriguing, it does not use any network theory to explain it. Post
hoc explanations resort tomoving fromunspeci�c network jargon into the vague quagmire
of complexity, evolutionary adaptations and “factors beyond species richness and number
of links” (p. �).

I read this paper as a description of network topologies without linking them back to
processes at population or community level beyond that of classical coexistence theory
(Grover ����;McPeek ����). Also, in their interpretation the authors recourse to exogenous
drivers, leaving the network focus that they claim to be behind all patterns observed.

�.�.� Positive e�ects of a network focus?
It has been argued that networks make ecologists think of the wider context and system
(e.g. Kennerley et al. ����). If so, this may be more indicative of a too narrow focus in
ecological research than of the usefulness of a network angle. Of such a narrowness I �nd
hints only in conservation ecology, where conservation targets are de�ned (arguably rightly
so) by societal preference (furry and feathery; or rarity, but not functional importance); of
course here a wider context would be desirable, if legally di�cult to implement. Indeed,
my selective and prejudiced reading in particular of recent ecological publications with
network spin leads me to believe that the term is largely a selling point, without any bene�t
to current ecological understanding.

One special but in my view well-justi�ed truly network-ecological study is that of
Bisanzio et al. (����). They model the robustness of a network to transfer of pathogens
among host species by visiting vectors (following up an idea in Pimm and Lawton ����).
Here, it is clear what �ows (the pathogen’s spores), why a generalist visitor acts as a hub (as
it connects di�erent sets of host species), and why modular networks would reduce spread
of the infection (because there it reduces pathogen �ow from one subset to another). This
is such a special case (a very generalist pathogen that can be transported by all vectors) that
it cannot serve as a blueprint for network processes more generally.

With our minds thus critically tuned, let us move on to the core points of this contri-
bution: deal breakers for network ecology.
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�.� Deal-breakers in network ecology

Deal-breaker �: How we sample networks
The median network study today is of bipartite networks, focussing on a set of species in
either guild: hummingbirds and the �owers they visit in selected patches (Tinoco et al.
����); birds feeding on tree fruits (Dehling et al. ����); or dung beetles burrowing seeds
contained in faeces (Frank et al. ����).

The problem here is that all these networks represent only partial and biased samples
of the relevant ecological process. Also bees visit the hummingbird �owers; also mammals
feed on tree fruits; and seeds also germinate without being buried by dung beetles �rst.

If, however, the network does not describe the process in its entirety or at least majority,
then what can it tell us about the process? Arguably, if hummingbirds also feed on insects
and rotting fruits, what relevance does the identity of the �owers visited has for their
ecology? If stingless bees (Meliponini) visit and pollinate the hummingbird �owers, what
is the relevance of the hummingbird-�ower network to the plants? And so it goes for any
and all published interaction networks.

The problem is that if networks are neither complete nor representative of the processes
in the community, if they do not describe the most relevant functions for their members
(growth, death, reproduction, birth), then what can such a network reveal about nature?
Certainly it cannot be used to predict e�ects of climate change on its members (Sonne et al.
����), as the interactions represented are not capturing what is relevant for the species
concerned.

The standard answer is that networks tell us about the specialisation of its members.
Except it does not, if the members do something “on the side” not recorded in the network.
One hummingbird may be more specialised than another with respect to a �ower available
to both, so what? It is not until we have unveiled the consequence of such specialisational
anecdotes that we can claim to have contributed a scienti�c insight. Any living organism is
subject to evolutionary pressures (if you pardon such sloppy phrasing), and every organism
has preferences in some and less in other facets of its life. What community ecology has
been looking for are generalisable principles of what makes communities a recognisable
entity, how interactions mould the stability and performance of the community; in which
way does it help to know the degree of specialisation of a species in a partially sampled set
of interactions?

A �rst step towards resolving this problem is to simulate complex communities and
investigate theoretically the e�ect of partial and biased sampling for getting the presumed
function right. A second step, in the �eld, would be to attempt to design the sampling in
such a way that the majority of interactions relevant for that process are indeed covered.
Knowing, e.g., the fate of almost all seeds of a tree is inconceivably di�cult, but it would
tell us whether the network interactions with frugivores are of any relevance.

Deal-breaker �: What an interaction network contains
A foodweb describeswho eatswhom.An interaction network describeswho interactswith
whom. Butwhat is that interaction? And what does binary and weighted information
represent?
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Several studies have argued and shown that binary networks, in which an interaction is
present or not, have little chance of representing the actual specialisation of the participants
(Blüthgen et al. ����; Nielsen and Bascompte ����; Dormann et al. ����; Blüthgen ����).
The reasoning is simple: an observed link could mean a single instance or a great many
interactions. A species with, say, � links could thus be a generalist or an extreme specialist,
depending on howmany interactions are actually hidden behind a single link (��, ��, ��,
�� vs. ��, �, �, �). It thus seems clear that binary networks are not useful for addressing
specialisation-related question, but specialisation is all that networks can provide beyond
what standard community ecological procedures already report (species richness, abun-
dances). Most new networks are quantitative, but the majority of recent network reviews
still analysed binary networks (e.g. Ne� et al., ����, Galiana et al., ����, Henriksen et al.,
����, Saravia et al., ����; but see Luna et al., ���� (itself criticised by Brimacombe et al.,
����), Sonne et al., ����).

But even if the network matrix contains quantitative information, what do they repre-
sent?A�ower visitmay lead to pollination and to nectar/pollen consumption, representing
a “Schrödinger interaction”, simultaneously positive and negative. Some studies show
that indeed such a correlation between number of visits and pollen deposited exist in bee
pollination networks (Alarcón ����; King et al. ����). The balance of negative and positive
e�ects is particularly important in fruit-frugivore or dung-beetle networks (or in lizard pol-
lination: Correcher et al. ����), where consumption may destroy seeds, but also improve
germination/establishment of those surviving. Typical studies compare gut-passaged seed
germination to whole-fruit germination (de Carvalho-Ricardo et al. ����; Fricke et al. ����;
Rogers et al. ����), which ignores the e�ect of seed destruction or deposition at unsuitable
sites (but see, e.g., Urrea-Galeano et al. ����).

A di�erent case are antagonistic systems, such as host-parasite/parasitoid networks. For
parasites the problem is the same as for pollinators – the e�ect of a parasitic interaction on
the host is typically unclear –, while for host-parasitoid systems the host must die if the
parasitoid develops.Here a quantitative network is actually very informative, as it e�ectively
samples the parasitism rate (Morris et al. ����, ����; Gripenberg et al. ����). Combined
with coupled population dynamical models, the network may show whether its structure
a�ects community dynamics and species abundances in line with what network indices
may suggest. While the data have been collected, I am not aware of any connection of
host-parasitoid network data with population models. Hence the jury is still out, whether
any index used to describe the network is meaningful for understanding the resulting
species abundances.

The way forward could follow the lead of host-parasitoid studies by quantifying the
actual demographic consequences of an interaction. Once such e�ects are quanti�ed, they
can be fed into interaction network models, based for example on coupled di�erential
equations (Drossel et al. ����; Bastolla et al. ����; Benadi et al. ����).

Deal-breaker �: How we aggregate data
Sampling interactions typically does not allow di�erentiating between individuals (Quin-
tero et al. ����). Thus, the number of interactions between plantA and visitor Bmay re�ect
the behaviour of one pollinator or frugivore, or the attractiveness of a single �ower out of
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Fig. �.�: Example of pooling across habitats. “Quantitative seed–dispersal network of the
Gorongosa National Park, Mozambique. [...] The aggregated network was obtained by
pooling all interactions across the four habitats, and summing their frequencies.” (Timóteo
et al. ����, p. �). Nice graphs, but what do these lines actually mean ecologically, beyond
the trivial ‘animals carry seeds’?

dozens in the patch. Thewell-known �oral constancy of individual honey bees (Waser ����;
Cakmak andWells ����; Hayes and Grüter ����) is a case in point: the behaviour of each
bee is at odds with the generalistic behaviour of the species. Averaging across individuals
suggests a very di�erent pollen dilution than knowing about individual’s �oral constancy.
How representative are these data for the interaction studied, if the aggregate information
across an unknown (or at least uncommunicated) number of individuals? Also, as data are
collected over some time, networks are typically aggregated across hours to days, averaging
out any variability that may have existed (Schwarz et al. ����; CaraDonna et al. ����). And,
occasionally, the same happens in space, when several �eld sites are used to construct an
interaction network (Dáttilo et al. ����, see also Fig. �.�).

Network structure is a�ected by aggregating individuals, samples, sites, but we do not
knowhow (seeArroyo-Correa et al. ����, for some early ideas). But if we do not knowwhat
happens during aggregation, we cannot know whether the result re�ects interesting
ecological patterns or aggregation artefacts.

A �rst step towards resolving the aggregation problem is to do a sensitivity analysis:
aggregate a bit more and a bit less than the focal aggregation level and see how it a�ects
the results. If they are more or less una�ected, then aggregation did not seem to introduce
substantial artefacts. If the dataset is particularly rich, analyses at di�erent aggregation
levels may even be possible (Schwarz et al. ����).

A next step would be, again, to explore this issue by simulation, ideally using individual-
based simulations, which are then sampled by a virtual ecologists (Zurell et al. ����) and
analysed by di�erent types of aggregation. In the �eld, attempts should be made to tell be-
tween individuals, in order to separate within-species from between-species specialisation.
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Deal-breaker �: What we can expect
Networks are typically described by indices, which quantify some pattern in the data.
Many such indices exist, but for most of themwe have no quantitative expectation. For
example, what is a high (or low) value for “linkage density” in a plant-herbivore network?

The absolute value depends a lot on our sampling intensity, on the species richness
of the involved guilds, and on their abundances. We can thus compare linkage density
between two habitats or treatments, but the actual value is of no practical use. For any
single network, however, we need a point of reference. That is where null models come in.

A null model simulates what a network would look like if a speci�c process was absent.
In a regression, the null model is the intercept-only model, i.e. a model without predictors.
That would also be the go-to approach for networks (Wells and O’Hara ����), but regret-
tably such approaches currently cannot accommodate the non-independence of entries in
the interaction matrix.

Parametric likelihood of an interaction matrix

There are two avenues towards a solution to this problem, each with its own set of un-
resolved issues. The �rst is an (unpublished) way to correctly compute the likelihood of
observing an interaction matrix’ entries given a probability matrix of the same dimensions
and �xing marginal totals. This is a bit di�erent from assuming that the matrix is actually
the outcome of a multinomial distribution with given per-cell probabilities (as used, e.g.,
by Vázquez et al. ����; Benadi et al. ����). It additionally observes the constraint that
species interaction are not independent across rows and columns. One consequence is
that once all observed interactions in a column or row are accounted for in the likelihood,
this column/row probability must be relocated to the remaining cells per row/column,
respectively.� In practice, this “Bjorn”-likelihood is only little di�erent from amultinomial
likelihood. The sticky point remaining is: where to get the probabilities from in the �rst
place?

Null models

The second avenue is interaction null models, of the same type used in co-occurrence and
biogeographical analyses (Gotelli and Graves ����; Gotelli ����; Vázquez and Simberlo�
����; Dormann et al. ����). For example, the Pate�eld-algorithm often used for quantita-
tive network null models takes the observed abundances as given and assumes all species
to interact randomly. Simulated interactions are thus proportional to species abundances,
as deduced from the interaction matrix marginal totals.

Other assumptions can be, and have been, made. For example one could choose to
keep the number of links in the network constant (Vázquez and Aizen ����; Vázquez
et al. ����). There are, however, two fundamental problems with modifying the Pate�eld
approach (see also Molina and Stone ����). First, a null model is not just any simulation
algorithm that yields a network. Rather, it has to have two necessary properties, which
have been shown for no existing quantitative null model except the Pate�eld algorithm:
(�) full con�guration space: the null model algorithm has to be able to �nd all possible

� A function implementing this algorithm by Björn Reineking is included in the R-package tapnet.
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con�gurations of the network that exist; and (�) uniform sampling: when generating
simulations, all these con�gurations must be generated with the same probability. These
are extremely stringent conditions, and it is mathematically extremely di�cult to prove
that they are met (see Carstens ����, for an example for a binary null model). If either of
the conditions is violated, the simulations do not represent what is possible, and they do
not represent what is possible fairly, i.e. they are biased.

This is no small matter, and it may be common. When I attempted to construct a
null model that maintains marginal sums (like Pate�eld’s) and the observed number of
links, it all seemed to work nicely. On closer investigation, however, I realised that certain
con�gurations were found by the algorithm much more readily than others, and some
were never found. This faulty algorithm can still be examined as bipartite::swap.web,
but using it would be simply wrong. The null model comparison performed with this null
model were too aggressive: it found much stronger deviations between the null and the
observations than is correct.

To repeat: using a null model only makes sense if this null model is able to sample the
entire space of possible con�gurations uniformly. Proving this is mathematically di�cult,
and simulations are infeasible, as the con�guration space is typically much too large. So,
currently we must consider all non-Pate�eld algorithms as experimental and provisionally
– and the results drawn from them, too.

Abundances: cause or e�ect of network structure?

Another fundamental problem with formulating an expectation, using null models, is to
use the number of interactions we observe per species as its abundance. (I omit here the
problem that activity confounds such abundance estimates. The abundance problem is
bad enough already.) These “abundances” are potentially a consequence of the interactions
in the network. If so, they cannot logically be used as independent estimates of abundance
for the null model. This dilemma has been referred to as the “chicken and egg problem”
(Fort et al. ����): if the network structure a�ects the abundances, then the abundances
cannot be used for the null model. While Fort et al. (����) argue that the chicken-or-egg
problem can be solved even with the data at hand, I remain unconvinced until formal
simulations have demonstrated that to be the case.

It is unclearwhen external abundances are independent of network structure, andwhen
the Pate�eld algorithm can thus still be used. Species in pollination networks typically are
much less dependent on interactions for their abundance than host-parasitoid networks,
so at that end of the dependence gradient the null model can probably still be useful. Using
the Pate�eld algorithm for host-parasitoid networks “only” tells us whether the observed
interactions are surprising given the observed abundances. But it cannot serve as a null
model in the sense of “in the absence of specialisation”, as abundances are at least to some
degree the result of network structure, too.

A di�erent step towards resolving the chick-and-egg problem is to sample abundances
in the �eld independently of the actual network.While that does not remove the circularity
of the null model, it at least gives expectations that do not immediately emerge from the
network data. A further step would be to collect data over time, so as to be able to represent
the population dynamics of the di�erent species involved. With a coupled population
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dynamic model this system could than be analysed for network con�gurational e�ects on
species abundances.

Deal-breaker �: What it means
Network indices abound. Some are plain and general, such as connectance, others are
involved and speci�c to a interaction type, such as the pollination dependence index. Some
are based on binary network information, which is problematic for reasons mentioned
earlier, others are very ad-hoc attempts to try and extract something meaningful from
a network. Very few, if any, network indices have been shown to map to an ecological
process or pattern. Only one or two indices have been subject to rigorous simulation or
mathematical analysis to investigate their behaviour (Blüthgen et al. ����; Poisot et al.
����). As a consequence, the majority of them is a�ected severely by network dimensions,
sampling intensity, degree of lumping species into morphotypes, misidenti�cation and
so forth (Nielsen and Bascompte ����; Dormann et al. ����; Gibson et al. ����; Chaco�
et al. ����; Rivera-Hutinel et al. ����; Fründ et al. ����; Vizentin-Bugoni et al. ����; de
Aguiar et al. ����; McLeod et al. ����).

Many indices have been transferred from other �elds of science, such as small world
properties, motifs or degree distributions (Vázquez et al. ����; Olesen et al. ����; Jácome-
Flores et al. ����). Reading these papers provides no justi�cation for their purported
usefulness in ecology. What does it mean that a network is robust to extinctions, if
the underlying procedures are unrelated to ecology (assuming static interactions as if
they were an electricity grid)? What does it mean for the abundance of the species in a
network that somemotifs of interactions aremore common or rare?How can a (truncated)
power law of degrees explain abundances of species or traits? How can (lack of) nestedness
explain which species dominates in a guild? There is a surprising number of high-ranking
publications that I regard as void of ecology, as they are not embedded in an ecologically
meaningful concept and which fail to logically relating some “network topological” index
to community processes.

To clean this Augean stables of network indices, we must work harder to demonstrate
that an index has an ecological meaning. Such demonstration will typically take the form
of a simulation study, which as to show that (�) an index does what it claims, and (�) no
other ecological cause can a�ect this index. That is hard! The well-intended and seemingly
sound partitioning of V-diversity into nestedness and turnover of Baselga (����, cited ����
times) was soon shown to be incorrect and yielding nonsensical results (Almeida-Neto
et al. ����, cited ��� times). To me, this shows that we are not trained in rigorous index
development and need to demand a higher standard for any old, new or transferred index
applied to interaction networks (one of the points emerging in Brugere et al. ����).

Deal-breaker �: Confused minds
Networks can be seen as a third-order pattern (Dormann et al. ����). The �rst order is
the number of species (two numbers), the second their abundance (two vectors, i.e. =+<
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units of information).� If we can explain a pattern in nature with �rst-order information,
why would we resort to the network matrix (= · < units of information)? Not only does
it violate the parsimony principle, it also fosters unclear thinking (also see critique by
Brimacombe et al. ����).

Take, for example, connectance. It is strongly dependent on sampling intensity, and on
the number of species observed, and hence connectance is typically a non-linear function
of �rst-order property “number of species observed”. It does not represent further informa-
tion about the network, because it is almost completely explained two levels further down.
When we interpret connectance as “forbidden links” (Jordano et al. ����), we invoke an
unproven complicated explanation when a simple one does exactly the same job (Vázquez
����). Note that this does not argue against the sound idea of implausible interactions,
only that connectance cannot possibly be responsible; but lack of matching traits can be.

A striking example of misconceptions behind networks is a conceptual �gure in
Moreno-Mateos et al. (����), which represents recovery of community properties during
secondary forest succession. First, species numbers recover, then species abundances, and
then with some temporal delay, “networks”. Such a delay implies that there is something
that prevents the species to interact as before the disturbance. Why should that be the
case? If a species is there, it will interact. Network indices are the direct consequence of
interacting species, and species interact as part of there existence. There is no lag between
recovery of abundances and “networks”. In fact, following the chicken-and-egg arguments,
the networksmust be similar to before the disturbance, otherwise the abundances would
be di�erent, too.

To me such mistakes point to a deeper confusion. Networks seem imbued with some
near-magical properties that make them the target of much current research, without
requiring the scientist to justify why a network-ecological approach was taken for a speci�c
question. The added bene�t of such an approach, which certainly exists in some cases,
should be demonstrated by �rst failing to explain a pattern with �rst- and second-order
properties of the network.

Furthermore, it is easy to claim some underlying coevolutionary or community eco-
logical cause for a pattern, but very di�cult to show (as deconstructed for modularity in
Dormann et al. ����). It is unfortunate that one can simply claim that this or that process
underlies a pattern, without proper demonstration. It is, of course, not only network ecol-
ogy that falls into this trap (see, for example, the many studies which claim that “species
distribution models are useful” without ever citing a study that demonstrates, only studies
that claim, such usefulness).

�.� From networks to ecology

The near-trivial equation underlying ecology is # = ⌫�⇡ + � �⇢ , describing the number
of individuals in the population of a given species as the result of demographic (birth and

� To complicate things a bit more, there is another level between � and �, �.� if you like: Do we need to
record all interactions together, or could we do species-level observations (e.g. in a cafeteria-experiment)
and just place them next to each other? This would also require = · < units of information, but collected
in isolation, rather than together. For the following arguments this distinction is not relevant.
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death) and dispersal/migration (im- and emigration). Interaction networks, in their typical
from, do not quantify the � and ⇢ component, in line with their focus on endogenous
processes. If they do also not contribute to our understanding of ⌫ and ⇡, then what is
their point?

The ecologically interesting question is whether, say, specialism increases the number of
o�spring or reduces mortality; not whether a network has a speci�c topology. This is not
the �rst time that network ecology has been argued to be disconnected from (community)
ecology (Blüthgen ����). Since then, little has happened with respect to the problems
outlined above.

The road ahead will require overcoming substantial obstacles, if network ecology is
to contribute to ecology, beyond buzzwords and enthusiasm: clear thinking, dedicated
data collection for speci�c hypotheses, and demonstration of e�ects of network structure
beyond mere claims of relevance.
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