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Abstract
1.	 Light	 detection	 and	 ranging	 (LiDAR)	 technology	 provides	 ecologists	 with	 high- 
resolution	data	on	three-dimensional	vegetation	structure.	Large	LiDAR	datasets	
challenge	predictive	ecologists,	who	commonly	simplify	point	clouds	into	structural	
attributes	(namely	LiDAR-based	metrics	such	as	canopy	height),	which	are	used	as	
predictors	in	ecological	models,	potentially	with	loss	of	relevant	information.

2.	 We	 illustrate	 an	 efficient	 alternative	 approach	 to	 reduce	 the	 dimensionality	 of	
LiDAR	data	that	aims	at	minimal	data	filtering	with	no	a priori	assumptions	on	the	
ecology	of	the	target	species.	We	first	fit	the	ecological	model	exploiting	the	full	
variability	in	the	LiDAR	point	cloud,	then	we	explain	the	results	using	post-model-
ling	LiDAR-data	classification	for	ecological	interpretation	only.	This	is	the	classical	
logic	 of	 explorative,	 hypothesis	 generating	 and	 predictive	 statistics,	 rather	 than	
testing	specific	vegetation-structural	hypotheses.

3.	 First,	we	reduce	the	dimensionality	of	the	LiDAR	point	cloud	by	principal	compo-
nent	analysis	(PCA)	to	fewer	predictors.	Second,	we	show	that	LiDAR-PCs	are	ca-
pable	 to	 outperforming	 commonly	 used	 environmental	 predictors	 in	 ecological	
modelling,	including	LiDAR-based	metrics.	We	exemplify	this	by	modelling	red	deer	
(Cervus elaphus) and roe deer (Capreolus capreolus)	resource	selection	in	the	Bavarian	
Forest	National	Park,	Germany.	After	fitting	the	ecological	model,	we	provide	an	
interpretation	 of	 the	 information	 included	 in	 LiDAR-PCs,	 which	 allows	 users	 to	
draw	conclusions	whenever	using	 them	as	predictors.	We	make	use	of	 the	PCA	
rotation	matrix	and	post-modelling	data	classification,	and	document	deer	selection	
for	understorey	vegetation	at	unprecedented	fine	scale.

4.	 Our	approach	is	the	first	attempt	in	animal	ecology	to	avoid	the	use	of	LiDAR-based	
metrics	as	model	predictors,	but	rather	generate	principal	components	able	to	cap-
ture	most	of	the	LiDAR	point	cloud	variability.	Our	study	demonstrates	that	LiDAR-
PCs	 can	 boost	 ecological	models.	We	 envision	 a	 potential	 use	 of	 LiDAR-PCs	 in	
several	applications,	particularly	species	distribution	and	habitat	suitability	models.	
We	demonstrate	an	application	of	our	approach	by	building	 suitability	maps	 for	
both	deer	species,	which	can	be	used	by	practitioners	 to	visualize	model	 spatial	
predictions	and	understand	the	type	of	forest	structures	selected	by	deer.
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1  | INTRODUCTION

Light detection and ranging (LiDAR) is an active remote sensing 

method	 that	 measures	 distances	 to	 the	 earth	 surface	 by	 sending	
light	from	an	aircraft	 in	the	form	of	 laser	pulses,	which	are	recorded	
as	 backscattered	 light	 after	 hitting	 on	 any	 surface	 structure.	Three-	
dimensional	 spatial	 coordinates	 are	 calculated	 for	 each	pulse	 at	 the	
location	where	it	hits	a	surface,	thus	generating	a	“point	cloud.”	LiDAR	
was	designed	to	retrieve	 information	useful	 for	planning	dams,	road	
construction,	 steering	 cruise	missiles,	 forest	 inventories	 (Lim,	Treitz,	
Wulder,	 St-	Onge,	 &	 Flood,	 2003),	 and,	 more	 recently,	 LiDAR	 has	
been	used	to	gather	three-	dimensional	vegetation	structure	for	ecol-
ogists	 (Neumann	et	al.,	2015;	Vierling,	Vierling,	Gould,	Martinuzzi,	&	
Clawges, 2008).

Light	detection	and	ranging	enables	precise	measurement	of	the	
three-	dimensional	structure	of	ecosystems	across	spatial	scales	from	
tree	branches	 to	entire	 landscapes	 (Vierling	et	al.,	2008).	A	plethora	
of	studies	on	birds,	bats,	nonflying	mammals	and	invertebrates	have	
shown	three-	dimensional	structure	to	be	the	key	driver	of	animal	ecol-
ogy	and	diversity	(Davies	&	Asner,	2014;	Simonson,	Allen,	&	Coomes,	
2014),	 including	species	distributions,	behaviour	and	resource	selec-
tion	(Davies,	Tambling,	Kerley,	&	Asner,	2016;	Flaspohler	et	al.,	2010;	
Vierling	et	al.,	2008).

Light	 detection	 and	 ranging	 point	 clouds	 are	 a	 conceptual	 and	
technical	 challenge	 to	 applied	 ecologists.	 To	 reduce	 file	 size	 and	
number	of	dimensions,	the	most	common	approach	used	so	far	is	to	
compute	LiDAR-	based	metrics	and	then	use	those	as	predictors	in	an	
ecological	model.	In	other	words,	LiDAR	datasets	can	be	interrogated	
at	different	grain	sizes	and	produce	different	metrics	for	different	eco-
logical	questions	(Davies	&	Asner,	2014;	Simonson	et	al.,	2014).	Flying	
animals	clearly	move	and	live	in	three-	dimensional	space,	for	instance	
and	LiDAR-	derived	metrics	that	supposedly	affect	movement	in	flight	
have	to	be	selected	accordingly	(Davies	&	Asner,	2014).	LiDAR-	based	
metrics	can	be	extracted	from	the	point	cloud	at	different	grid	cell	size,	
i.e.	area-	based	LiDAR	metrics,	and	for	individual	trees	following	crown	
segmentation,	i.e.	individual	tree	recognition	(Simonson	et	al.,	2014).

Light	 detection	 and	 ranging-	based	 metrics	 such	 as	 understorey	
density,	 canopy	 vertical	 distribution,	 canopy	 height	 and	 cover	 have	
been	shown	to	be	related	to	animal	ecology	across	taxonomic	groups	
(see	table	1	 in	Davies	&	Asner,	2014;	see	table	1	 in	Simonson	et	al.,	
2014).	Classification	of	LiDAR	returns	in	height	percentiles,	fractional	
cover	or	forest	density	classes	are	an	example	of	LiDAR-	derived	met-
rics	 deployed	 in	 large	 herbivorous	 ecology	 (Lone,	 Loe,	 et	al.,	 2014;	
Lone,	 van	 Beest,	 et	al.,	 2014;	 Melin	 et	al.,	 2014;	 Nijland,	 Nielsen,	
Coops,	 Wulder,	 &	 Stenhouse,	 2014).	 Depending	 on	 the	 ecological	
question,	researchers	may	decide	to	limit	the	use	of	LiDAR	data	de-
scribing	 vegetation	 within	 a	 certain	 height	 threshold,	 for	 example	
two	metres	above	 the	ground	 for	 large	herbivores,	which	 is	directly	
related	 to	 the	 feeding	 ecology	of	 the	 target	 species	 (Ewald,	Dupke,	
Heurich,	Müller,	&	Reineking,	2014;	Lone,	van	Beest,	et	al.,	2014).	This	
approach,	however,	subsets	LiDAR	data	based	on	what	the	researcher	
thinks	an	animal	is	looking	for,	rather	than	allowing	the	data	to	suggest	
a model based on where the animals have been recorded.

We	 thus	 illustrate	 an	 alternative	 “fit	 first,	 explain	 later”-	
philosophy	 for	 avoiding	 loss	 of	 information	with	 high-	dimensional	
predictors.	This	approach	implies	a	limited	pre-	processing	of	LiDAR	
point	cloud	data	(i.e.	dimensionality	reduction	with	insignificant	loss	
of	variability),	which	is	necessary	to	make	the	data	usable	in	ecolog-
ical	applications,	but	avoids	data	filtering.	We	first	fit	the	ecological	
model	exploiting	the	full	variability	 in	 the	LiDAR	point	cloud	data,	
and	then	we	explain	and	interpret	the	results	using	post-	modelling	
LiDAR	data	classification	only	 for	ecological	 interpretation.	This	 is	
the	 classical	 logic	 of	 explorative,	 hypothesis	 generating	 and	 pre-
dictive	 statistics,	 rather	 than	 testing	 specific	vegetation-	structural	
hypotheses.

We	 describe	 our	 approach	 to	 handle	 LiDAR	 data	 in	 three	main	
steps.

First,	we	 show	 that	 the	 principal	 component	 analysis	 (PCA)	 is	 a	
simple	 but	 effective	method	 to	 condense	most	 of	 the	 variability	 in	
LiDAR	point	cloud	into	few	predictors	(1st	goal).

Second,	 we	 show	 that	 principal	 component	 axes	 derived	 from	
LiDAR	 data	 are	 capable	 to	 outperforming	 commonly	 used	 environ-
mental	and	habitat	predictors	(e.g.	habitat	maps,	LiDAR-	based	metrics)	
in	ecological	predictions	(2nd	goal).	We	exemplify	this	by	analysing	red	
deer (Cervus elaphus) and roe deer (Capreolus capreolus) resource selec-
tion	in	the	Bavarian	Forest	National	Park	(BFNP),	Germany,	although	
this	 approach	 similarly	 applies	 to	 other	 ecological	 applications.	 The	
use	of	PCA	is	not	new	in	the	remote	sensing	community,	where	it	is	
routinely	used	to	reduce	the	data	dimensionality	or	extract	 informa-
tion	on	individual	tree	crown	when	using	LiDAR	point	clouds	and/or	
hyperspectral	 data	 (Fayad	et	al.,	 2014;	 La,	 Eo,	Chang,	&	Kim,	 2015;	
Onojeghuo	&	Blackburn,	 2011).	Our	work,	 however,	 is	 the	 first	 at-
tempt	in	animal	ecology	to	avoid	the	use	of	LiDAR-	based	metrics,	but	
rather	 generate	 principal	 components	 as	 predictors	 able	 to	 capture	
most	of	the	LiDAR	point	cloud	variability	and	boost	the	performance	
of	ecological	models.

Third,	 after	 fitting	 the	 ecological	 model,	 we	 discuss	 our	 results	
by	providing	an	 interpretation	of	 the	 information	 included	 in	princi-
pal	axes	derived	from	LiDAR	data	(3rd	goal),	which	allows	users	(from	
theoretical	 ecologists	 to	practitioners)	 to	make	 inferences	and	draw	
final	 conclusions,	 whenever	 using	 LiDAR	 principal	 components	 as	
predictors.

2  | MATERIALS AND METHODS

2.1 | Using PCA to capture LiDAR data variability 
(1st goal)

We	collected	full	waveform	LiDAR	data	for	the	BFNP	(240	km2
). The 

aerial	survey	was	conducted	under	leaf-	on	conditions	by	a	contractor	
(Milan-	Flug-	GmbH)	on	24–26.07.2012.	LiDAR	data	were	recorded	by	
a	Riegl-	Q680i	(operating	at	a	pulse	frequency	of	350	KHz)	laser	scan-
ner	mounted	on	the	aircraft.	Specific	details	on	LiDAR	survey:	height	
above	 the	ground:	650	m;	 flight	 speed:	36	m/s;	 overlap:	50%;	 laser	
wavelength:	 1,550	nm;	 scan	 frequency:	 37.500/s;	 pulse	 frequency:	
300.000/s;	FOV:	±30°;	beam	dispersion:	<0.5	mrad.
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During	pre-	processing,	we	applied	a	decomposition	of	the	LiDAR	
waveforms	(i.e.	discretized	and	then	discarded)	using	Gaussian	func-
tions	 (Wagner,	Ullrich,	Ducic,	Melzer,	&	Studnicka,	2006).	The	num-
ber	of	beams	was	15/m2,	whereas	the	number	of	recorded	reflections	
after	waveform	decomposition	was	40/m2.	We	converted	the	raw	data	
to	spd	format	with	the	open-	source	Sorted	Pulse	Data	library,	SPDLib	
(Bunting,	Armston,	Clewley,	&	Lucas,	2013;	Bunting,	Armston,	Lucas,	
&	Clewley,	2013).	Ground	returns	were	first	classified	with	the	pro-
gressive	morphology	filter	(Zhang	et	al.,	2003),	and	then	by	the	multi-	
scale	curvature	algorithm	(Evans	&	Hudak,	2007),	both	implemented	in	
the	SPDLib.	We	thus	used	a	natural	neighbour	algorithm	to	interpolate	
ground	 elevation	values	 for	 each	 return.	We	obtained	 a	 normalized	
three-	dimensional	LiDAR	point	cloud	with	the	position	of	all	returns	
relative	to	ground	level	by	subtracting	ground	elevation	from	the	re-
turn coordinates.

We	 subdivided	 the	 LiDAR	 point	 cloud	 at	 the	 finest	 resolution	
determined	by	the	accuracy	of	the	laser	sensor:	vertical	subdivisions	
were	made	every	0.5	m	above	ground,	whereas	horizontal	resolution	
was initially set to 1 m

2.	We	thus	created	voxels	(volume	elements)	of	
1 × 1 × 0.5 m

3.	We	counted	the	proportion	of	returns	in	each	voxel	(i.e.	
the	number	of	returns	as	a	proportion	of	the	total	number	in	the	entire	
vertical	column	to	which	the	voxel	belongs)	and	stored	all	voxel	counts	
with the same height above ground in a raster layer. Consequently, 

one	 hundred	 layers	were	 created	 representing	 all	 the	 height	 levels	
from	 ground	 to	 the	maximum	 tree	 height	 of	 50	m	 in	 the	 surveyed	
area. The lowest layer with returns below 0.5 m was discarded due 

to the inability in distinguishing between vegetation and ground re-
turns	 (Heurich,	Fischer,	Knoerzer,	&	Krzystek,	2008).	The	 rasterized	
dataset	thus	comprised	99	layers	of	33,000	×	31,000	grid	cells,	each	
layer	including	same	height	voxels	and	each	grid	cell	representing	the	
proportion	of	returns	in	one	voxel.

We	did	not	take	arbitrary	decisions	in	defining	the	vertical	resolu-
tion	(i.e.	voxel	height),	because	it	was	determined	by	the	laser-	sensor	
accuracy.	Selecting	a	coarser	vertical	resolution	would	have	speeded	
up	our	computations,	which	we	avoided,	however,	 in	order	 to	keep	
the	entire	variability	 in	the	point	cloud	data.	A	different	approach	is	
needed	for	the	horizontal	resolution,	which	is	the	size	of	the	grid	cell	
that	can	affect	the	way	we	represent	the	forest	structures.	On	the	one	
hand,	under	dense	canopy	cover,	our	starting	1-	m2

 resolution may be 

a	rather	small	grain	size,	resulting	in	few	laser	returns	from	the	under-
storey	vegetation,	leading	to	several	empty	voxels	and	sparse	matri-
ces.	On	the	other	hand,	setting	a	 larger	horizontal	 resolution	would	
correspond	to	a	generalization	of	details	and	imply	a	loss	of	fine-	scale	
information.	Thus,	the	horizontal	resolution	has	to	be	defined	via	sen-
sitivity	analysis	by	inspecting	increasingly	coarser	grid	cell	size	(details	
below).

Return	proportions	in	vertically	adjacent	voxels	are	highly	collinear.	
We	 thus	 ran	 a	 PCA	 to	 generate	 uncorrelated	 principal	 components	
(PCs)	able	to	harness	the	variability	in	the	99	layers	and	represent	the	
vertical	vegetation	structure.	This	analysis	is	achieved	by	performing	an	
eigenvalue	decomposition	on	the	correlation	matrix	of	the	data.	Given	
that X	is	the	original	matrix	of	data	points,	the	transformed	data	matrix	
X′ is generated as X′ = λX, with λ	being	the	matrix	of	the	eigenvalues	

of	the	correlation	matrix	or	rotation	matrix.	In	practice,	we	performed	
a	singular	value	decomposition	of	the	centred	and	scaled	data	matrix,	
which	 leads	 to	 a	 higher	 numerical	 accuracy	 (Mardia,	 Kent,	 &	 Bibby,	
1980).

We	 repeated	 this	procedure	at	different	horizontal	 resolutions	
by	aggregating	laser	returns	from	the	original	1	×	1	m2

 raster to the 

new	 horizontal	 extents.	 The	 optimal	 horizontal	 resolution	 is	 here	
defined	as	the	one	that	can	explain	the	greatest	amount	of	LiDAR	
variability	with	fewest	PCs	and,	at	the	same	time,	preserve	fine	de-
tail	by	keeping	grid	cell	size	low.	This	can	be	achieved	via	sensitivity	
analysis	 by	 screening	 the	 curves	of	 cumulative	variance	explained	
by	PCAs	carried	out	on	different	horizontal	aggregation	levels.	Note	
that	this	approach	is	expected	to	define	different	optimal	horizontal	
resolutions	depending	on	the	vegetation	complexity	of	the	surveyed	
areas	as	well	as	on	the	pulse	density	of	the	LiDAR	dataset,	and	hence	
this	sensitivity	analysis	is	an	intrinsic	part	of	the	overall	analysis.

Once	 the	 spatial	 resolution	 is	 defined,	 the	 corresponding	 PCA	
produces	as	many	axes	as	 the	number	of	dimensions	 in	 the	dataset	
(in our case n	=	99).	We	suggest	reducing	this	number	while	retaining	
enough	PCs	to	embrace	most	of	LiDAR	data	variability.	We	selected	
all	PCs	that	explain	a	proportion	of	variance	equal	or	higher	than	1/n 

(Jolliffe,	2002).	We	will	refer	to	them	as	LiDAR-	PCs	hereafter.	We	vi-
sualized	key	steps	described	so	far	in	Figure	1.	The	handling	of	large	
LiDAR	datasets	may	be	 challenging	 and	 requires	 computer	memory	
and	power,	which	may	not	be	accessible	to	all	ecologists	and	practi-
tioners.	We	provided	as	Appendix	S1	an	overview	of	 shortcuts	 that	
may	be	necessary	in	case	of	limited	computer	power	and	full	details	on	
the	sensitivity	analysis	for	the	horizontal	resolution.

2.2 | Fit first, explain later: time to fit (2nd goal)

We	compared	 the	performance	of	LiDAR-	PCs	with	alternative	envi-
ronmental covariates using deer satellite telemetry data collected in 

the	BFNP	(study	site	details	in	Appendix	S2)	and	modelling	deer	habi-
tat selection.

2.2.1 | Roe and red deer telemetry data

We	obtained	telemetry	data	for	female	red	and	roe	deer	(Ciuti	et	al.,	
2017)	in	the	BFNP	(details	in	Appendix	S2).	Both	deer	species	were	fit	
with	GPS-	GSM	collars	(VECTRONIC	Aerospace,	Germany).	Accuracy	
field	tests	carried	out	with	static	GPS	collars	revealed	a	high	overall	
position	acquisition	rate	(96.7%)	and	accuracy	(10	m;	Stache,	Löttker,	
&	Heurich,	2012).	We	used	deer	telemetry	data	collected	 in	spring-	
summer 2010–2012, when the conditions were similar to those 

recorded	by	LiDAR	(summer	2012).	Our	four	datasets	included	relo-
cations	at	15-	min	 (11,956	 locations,	n	=	10	 females)	and	1-	h	 (5,290	
locations, n	=	10	females)	sampling	rate	for	red	deer,	and	1-	h	(6,678	
locations, n	=	17	 females)	 and	 4-	h	 (1,415	 locations,	n	=	15	 females)	
sampling	rate	for	roe	deer	respectively.	Fine-	scale	resource	selection	
patterns	 can	 be	 affected	 by	 sampling	 rate	 (Boyce,	 2006;	 Thurfjell,	
Ciuti,	&	Boyce,	2014);	we	 thus	 ran	separate	analyses	on	 these	 four	
datasets.
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2.2.2 | Building deer resource selection functions

A	resource	selection	function	(RSF)	is	defined	as	any	statistical	model	
designed	to	estimate	 the	relative	probability	of	an	animal	selecting	
a	 resource	 unit	 relative	 to	 alternative	 possible	 available	 resource	
units	(Manly,	McDonald,	Thomas,	McDonald,	&	Erickson,	2002).	To	
avoid	misconception,	selection	in	RSFs	is	clearly	based	on	used	and	
available	resource	units,	and	not	on	used	and	unused	ones.	For	every	
GPS-	location	where	deer	were	relocated,	we	associated	50	random	
locations	 to	 represent	alternatively	available	 resource	units	 (details	
on	why	and	how	we	selected	50	random	locations	are	fully	reported	
in	Appendix	S2).	Random	available	locations	were	associated	to	each	
used location in a way that available locations were actually reach-
able	by	the	deer	within	the	time	interval	defined	by	the	fix	rate.

We	 first	 fit	GLMMs	with	binomial	 response	variable	 (1:	used;	0:	
available)	 to	 estimate	 model	 parameters	 using	 the	 package	 “lme4”	
in	R	(Bates,	Mächler,	Bolker,	&	Walker,	2015).	The	stratum—i.e.	each	
deer-	used	location	and	its	50	random	available	locations—was	nested	
within	 the	 deer	 identity	 as	 random	 intercept	 in	 the	 mixed	 model.	
We	 then	 calculated	 RSFs	 based	 on	 model	 parameters	 β	 (excluding	
the	 intercept)	 estimated	 by	 the	 GLMMs	 in	 the	 following	 equation:	
w(x)	=	exp(β

1
x

1
 + β

2
x

2
 + ··· + βnxn), where w(x)	 is	 the	 relative	probabil-

ity	of	 selection	and	x	 is	 a	 covariate	vector	of	 length	n (Manly et al., 

2002).	We	compared	(using	Akaike’s	information	criterion)	alternative	
resource	 selection	model	 structures	containing	either	LiDAR-	PCs	or	
other	environmental	variables	as	predictors.

2.2.3 | Fitting alternative resource selection 
model structures

All	 models	 contained	 a	 set	 of	 default	 predictors	 taking	 the	 form	
sun_elev + sun_elev² + rugged + rugged² + dist_trails + dist_trails² +  

solrad + sun_elev × dist_trails + sun_elev × solrad.

Sun_elev	(elevation	of	the	sun	with	respect	to	the	horizon)	is	a	proxy	
for	 time	 of	 the	 day.	 Rugged	 is	 the	 terrain	 ruggedness	 derived	 from	
the	digital	elevation	model	and	is	a	proxy	for	terrain	accessibility	and	
human	 disturbance	 (e.g.	 steeper	 terrains	 less	 accessible	 to	 humans).	
Dist_trails	 represents	 the	distance	 to	 the	 closest	 hiking	 trail,	 again	 a	
proxy	for	human	disturbance,	whereas	solrad	is	a	categorical	proxy	for	
microclimate	conditions	(see	Table	S1	for	additional	details).	These	pre-
dictors	allowed	taking	into	account	variation	in	selection	patterns	as	a	
function	of	time	of	the	day,	human	disturbance	and	microclimate	con-
ditions	 respectively.	Quadratic	 terms	 for	continuous	predictors	were	
included	to	allow	for	nonlinear	relationships	in	selection	patterns.	The	
interaction sun_elev × dist_trails was included to allow variation in the 

selection	for	roads	as	a	function	of	the	time	of	the	day	(e.g.	assuming	
less humans on roads at night), whereas sun_elev × solrad was included 

to	depict	the	variation	in	selection	of	sites	with	different	microclimatic	
conditions	as	a	function	of	the	time	of	the	day	and	related	temperature.	
The	models	differed	 in	 the	environmental	predictors	unique	 to	each	
model	(described	below	and	in	Table	S1).	When	the	environmental	pre-
dictor	was	categorical,	then	the	model	also	included	a	two-	way	interac-
tion with sun_elev	to	depict	variation	in	selection	for	the	environmental	
predictor	as	a	function	of	time	of	the	day.	Likewise,	when	the	predictor	

F IGURE  1 Main	steps	involved	in	the	reduction	in	dimensionality	of	light	detection	and	ranging	(LiDAR)	point	cloud	data	into	fewer	principal	
components	(PCs).	In	this	example	with	LiDAR	data	from	the	Bavarian	Forest	National	Park,	Germany,	horizontal	resolution	was	set	to	10	m,	
leading	to	the	selection	of	the	first	nine	PCs	responsible	for	carrying	more	than	90%	of	the	variability	in	the	point	cloud

Grid cells Easting Northing 0.5 - 1 m 1 - 1.5 m 1.5 - 2 m 2 - 2.5 m … … … 49 - 49.5 m 49.5 - 50 m
grid cell1 x1 y1 r1,1 r1,2 r1,3 r1,4 … … … r1,98 r1,99
grid cell2 x2 y2 r2,1 r2,2 r2,3 r2,4 … … … r2,98 r2,99

… … … … … … … … … … … …
grid celln xn yn rn,1 rn,2 rn,3 rn,4 … … … rn,98 rn,99

Grid cells Easting Northing PC1 PC2 PC3 PC4 … … … PC98 PC99
grid cell1 x1 y1 pc1,1 pc1,2 pc1,3 pc1,4 … … … pc1,98 pc1,99
grid cell2 x2 y2 pc2,1 pc2,2 pc2,3 pc2,4 … … … pc2,98 pc2,99

… … … … … … … … … … … …
grid celln xn yn pcn,1 pcn,2 pcn,3 pcn,4 … … … pcn,98 pcn,99

Grid cells Easting Northing PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
grid cell1 x1 y1 pc1,1 pc1,2 pc1,3 pc1,4 pc1,5 pc1,6 pc1,7 pc1,8 pc1,9
grid cell2 x2 y2 pc2,1 pc2,2 pc2,3 pc2,4 pc2,5 pc2,6 pc2,7 pc2,8 pc2,9

… … … … … … … … … … … …
grid celln xn yn pcn,1 pcn,2 pcn,3 pcn,4 pcn,5 pcn,6 pcn,7 pcn,8 pcn,9

rgc,vl  corresponds to the proportion of returns in each voxel of 10 m × 10 m  × 0.5 m (being 10 m the horizontal 
resolution of grid cells), where gc  is the grid cell identification code and vl  is the voxel layer.
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was	continuous,	we	included	a	quadratic	term	to	account	for	nonlinear	
effects	as	well	as	a	two-	way	interaction	with	sun_elev.

We	fit	seven	alternative	GLMMs.	Model	1	included	only	the	default	
predictors.	Models	2–7	included	alternative	environmental	predictors	
which	were	satellite-	,	aerial	image-		or	LiDAR-	derived	covariates	(Table	
S1)	 respectively.	Model	 2	 included	 a	 photo-	interpreted	 habitat	 map	
of	the	BFNP	from	year	2012	(map2012).	This	map	was	commissioned	
by	the	BFNP	to	a	contractor	(Geoplana),	with	a	resolution	below	5	m.	
Model	3	 included	the	NDVI	 (ndvi)	as	the	main	environmental	predic-
tor.	We	derived	the	monthly	NDVI	from	Landsat-	bands	5	(TM)	and	7	
(ETM+).	We	downloaded	one	satellite	image	for	each	month	across	the	
monitoring	period	(spring-	summer	2010–2012)	with	cloud	cover	lower	
than	10%.	We	computed	NDVI	from	band	3	(red)	and	4	(near	infrared).	
Models	 4	 and	 5	 included	 the	 classical	 LiDAR-	based	metrics	 used	 in	
large	herbivorous	ecology.	Model	4	included	as	the	main	predictor	the	
mean	height	of	vegetation	 (MeanHeight)	 from	all	 returns	of	the	point	
cloud	within	a	grid	cell	(Ackers,	Davis,	Olsen,	&	Dugger,	2015;	Farrell	
et	al.,	2013).	Model	5	included	the	fractional	vegetation	cover	of	three	
different	height	strata	as	predictors.	Following	the	approach	of	Ewald	
et	al.	(2014),	we	calculated	the	understorey	(UStory), midstory (MStory) 

and overstory vegetation (OStory).	 Each	predictor	described	 the	pro-
portion	of	returns	within	their	height	strata	and	captured	information	
of	the	vegetation	density	(Lone,	Loe,	et	al.,	2014;	Lone,	van	Beest,	et	al.,	
2014).	Finally,	we	built	the	alternative	models	6	and	7	using	LiDAR-	PCs.	
On	the	basis	of	the	results	of	the	sensitivity	analysis	on	LiDAR	horizon-
tal	resolution,	we	decided	on	using	two	different	resolutions	and	cre-
ated	a	model	for	each	of	them	(see	Section	3).	Thus,	we	incorporated	
a	different	number	of	predictors	(number	of	PCs)	in	model	9	and	10.

Predictors	 included	 in	 each	 model	 structure	 were	 not	 collinear	
(Pearson	|rp| ≪	.7,	sensu	(Zuur,	Ieno,	&	Smith,	2007).	Specifically,	de-
fault	predictors	used	as	standard	inputs	to	all	GLMMs	were	practically	
uncorrelated	(Pearson	|rp|	<	.15).

2.3 | Fit first, explain later: time to explain (3rd goal)

The	use	of	LiDAR-	PCs	poses	some	challenges	in	result	interpretation	
and	accessibility	to	practitioners	and	applied	scientists,	and	we	need	
to	provide	a	way	to	understand	their	meaning.	We	thus	provided	the	
following	items	that	we	use	in	the	discussion	for	interpretation:

1. Rotation	 matrix	 plots	 showing	 how	 LiDAR	 return	 height	 classes	
(thus,	 vegetation	 structure)	 load	 on	 each	 principal	 component;

2. reclassification	of	PCs’	values	depending	on	the	vegetation	classes	
defined	by	the	most	accurate	vegetation	map	available	for	the	area,	
meaning	that	the	reader	can	translate	the	deer-selected	PCs	into	
selection	for	habitat	classes	meaningful	to	humans;

3. vegetation cross sections (300 × 10 m
2)	to	better	visualize	the	rela-

tionship	 between	 LiDAR-PC-values,	 vegetation	 type	 and	 LiDAR	
point	cloud	structure.	This	step	also	demonstrates	how	LiDAR-PCs	
are	able	to	capture	fine-scale	details	in	vegetation	structure	usually	
not	detectable	(thus	lost)	in	high-resolution	vegetation	maps;

4. examples	 of	 suitability	maps	 (based	 on	 the	 top-ranking	models)	 for	
both	 deer	 species,	 which	 can	 be	 used	 by	 practitioners	 to	 visualize	

model	 spatial	 predictions,	 understand	 the	 relationship	between	PCs	
and	vertical	forest	structure,	and	manage	their	landscapes	accordingly.

Data handling and analyses were carried out using R 3.3.2 (R Core 

Team,	2016).

3  | RESULTS

3.1 | Using PCA to capture LiDAR data variability 
(1st goal)

The	sensitivity	analysis	for	the	optimal	horizontal	resolution	(Appendix	
S1)	 showed	 that	 grid	 cell	 sizes	 lower	 than	 25	m2

 (5 m × 5 m) did 

not	 allow	 the	PCA	 to	effectively	 reduce	 the	 complexity	of	 the	data	
(e.g.	 more	 than	 40	 principal	 components	 required	 to	 explain	 90%	

FIGURE 2 Variance	and	cumulative	variance	explained	in	light	
detection	and	ranging	point	cloud	data	by	the	first	15	principal	
components	(PCs)	as	predicted	by	principal	component	analysis.	PCs	
able	to	explain	more	than	1%	of	variance	(histograms	above	the	0.01	
threshold)	were	deployed	as	predictors	in	deer	resource	selection	models
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of	 variability).	We	 stopped	 our	 sensitivity	 analysis	 at	 the	 resolution	
10 m × 10 m (100 m

2),	when	we	could	capture	most	of	the	variability	
in	LiDAR	data	with	an	affordably	low	number	of	principal	components.	
This	was	 our	main	PCA	grid	 cell	 size	 (Figure	2;	 Figure	 S1).	We	 also	
picked	the	arbitrary	horizontal	resolution	5	m	×	5	m	(25	m2

) as a com-
parison	(Figure	2;	Figure	S1).	We	selected	all	PCs	explaining	more	than	
1.0%	of	the	original	variance	as	predictors	in	ecological	modelling.	This	
approach	yielded	11	PCs	for	the	5	m	resolution	(capable	of	capturing	
85%	of	the	total	variability	included	in	LiDAR	data),	and	nine	PCs	for	
the	10	m	resolution	(91%	of	cumulative	variance	explained;	Figure	2).

3.2 | Fit first, explain later: time to fit (2nd goal)

Models	including	LiDAR-	PCs	(10	m	resolution)	outperformed	any	other	
model	including	alternative	environmental	covariates	in	predicting	habi-
tat	selection	in	deer	(Table	1).	In	roe	deer	(both	fix	rates)	and	red	deer	(1-	h	
fix	 rate	only),	10-	m-	resolution	LiDAR-	PCs	 improved	model	 fit	by	 least	
33.0	points	in	AIC	compared	to	other	LiDAR-	derived	metrics,	and	even	
greater	differences	 in	 alternative	models.	 In	 red	deer	only	 (15-	min	 fix	
rate),	LiDAR-	derived	fractional	vegetation	cover	had	predictive	perfor-
mances	comparable	to	10-	m-	resolution	LiDAR-	PCs	(Table	1).	Five-	metre	
resolution	LiDAR-	PCs	had	weaker	predictive	ability	than	10-	m-	resolution	
LiDAR-	PCs	 (Table	1).	 We	 reported	 in	 Table	 S2	 additional	 alternative	
models	with	further	environmental	predictors	not	described	here,	which	
again	were	outperformed	by	10-	m-	resolution	LiDAR-	PCs.

Parameter	estimates	for	the	four	best	models	selected	in	Table	1	
are	 reported	 in	Table	S3.	Both	deer	species	selection	was	driven	by	
terrain	ruggedness,	distance	to	trails	and	vegetation	structure	repre-
sented	by	LiDAR-	PC1-	PC5	as	a	function	of	time	of	the	day,	with	minor	
deviation	from	the	general	pattern	in	few	cases	depending	on	species	
and/or	fix	rate.

With	respect	to	default	predictors,	roe	and	especially	red	deer	se-
lected	for	more	gentle	terrain	(Figure	S2),	whereas	both	species	were	
less	 likely	 to	be	 relocated	closer	 to	 trails	during	 the	day	 (Figure	S2;	
Table	 S3).	 According	 to	 parameters	 estimated	 for	 LiDAR-	PCs,	 both	
deer	 species	 strongly	 selected	 for	 the	 environmental	 characteristics	
described	by	the	first	five	PCs	(Table	S3),	which	alone	carry	more	than	
80%	of	 the	entire	variability	 in	LiDAR	data	 (Figure	2).	Selection	pat-
terns	 for	PC1-	5	by	deer	 are	depicted	 in	Figure	3	 (1-	h	 fix	 rates)	 and	
Figure	S3	(red	deer	15-	min	and	roe	deer	4-	h	fix	rates).	Based	on	the	
relationship	between	vegetation	height	 and	PC	 loading	depicted	by	
rotation	matrixes	 (Figure	3),	 the	 first	 five	 PCs	were	 able	 to	 capture	
the	understorey	vegetation	occurring	in	different	vegetation	context,	
i.e.	 PC1:	 negative	 loadings,	 within	 open	 areas;	 PC2:	 positive	 load-
ings,	within	25–30	m	 forest	height;	PC3-	4:	positive	 loadings,	within	
15–25	m	 forest	 height;	 PC5,	 negative	 loadings,	 within	 15–20	 and	
30–35	forest	height.	Remarkably,	both	deer	species	strongly	selected	
for	those	sites	containing	understorey	vegetation	(Figure	3,	Figure	S3),	
with	variation	depending	on	the	time	of	the	day	and	the	forest	struc-
ture,	for	example	understorey	vegetation	within	open	areas	depicted	
by	PC1	mostly	selected	at	twilight	and	night	vs. understorey vegeta-
tion	within	forest	patches	depicted	by	PC5	mostly	selected	during	the	
day	(Figure	3;	Figure	S3).

4  | DISCUSSION

We	provided	an	empirical	 illustration	of	how	LiDAR	data	perfor-
mance	as	environmental	predictors	can	be	greatly	 improved	(2nd	
goal)	by	embracing	their	variability	with	simple	PCAs	(1st	goal).	In	
contrast	to	previous	research	(reviewed	in	Davies	&	Asner,	2014;	
Simonson	 et	al.,	 2014),	we	 did	 not	 filter	 LiDAR	 data	 by	 creating	

TABLE  1 Comparison	of	generalized	linear	mixed-	effect	models	(different	deer	species	and	fix	rates)	explaining	the	variability	in	resource	
selection	based	on	the	Akaike’s	information	criterion

Red deer Red deer Roe deer Roe deer

15- min 1- h 1- h 4- h

No. Model
Estimated 
parameters ΔAIC Rank ΔAIC Rank ΔAIC Rank ΔAIC Rank

1 No	vegetation 12 354.8 7 507.1 7 792.6 7 396.0 7

3 NDVIa 15 333.9 6 454.0 6 752.2 6 367.0 6

4 Mean vegetation height
b

15 287.9 5 393.8 5 300.1 5 128.1 5

2 Habitat	classification	
map	BFNPc

42,	42,	42,	38d 229.4 4 231.2 4 169.9 3 55.1 3

5 Fractional	vegetation	
cover

b

21 1.5 2 45.1 2 179.9 4 80.0 4

6 LiDAR-	PCs	(5	m	
horizontal	resolution)b

45 40.8 3 74.4 3 71.8 2 33.0 2

7 LiDAR-	PCs	(10	m	
horizontal	resolution)b

39 0 1 0 1 0 1 0 1

Model	1	includes	default	predictors	but	no	environmental	ones.	Models	2–7	include	alternative	environmental	predictors,	which	were	asatellite-	,	bLiDAR-		
or 

caerial	image-	derived	covariates.	See	Table	S1	for	full	details	on	predictors.
dEstimated	parameters	vary	depending	on	the	levels	of	the	categorical	predictor.
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metrics based on a priori	 assumptions	 linked	 to	 the	 ecological	
problem	 under	 scrutiny.	 Previous	 research	 in	 large	 herbivores	
showed	how	LiDAR-	based	metrics	may	have	comparable	predic-
tive	performance	compared	 to	non-	LiDAR	environmental	predic-
tors	(Lone,	Loe,	et	al.,	2014;	Lone,	van	Beest,	et	al.,	2014),	whereas	
our	LiDAR-	PCs	significantly	outperformed	all	other	environmental	
predictors.

If	the	aim	of	a	study	is	to	predict	animal	resource	selection	or	distri-
bution,	then	our	LiDAR-	derived	PCs	are	suitable	candidate	predictors	
able to nicely embrace environmental variability which, combined with 

other	covariates,	can	guarantee	the	best	predicting	performances,	no	
matter	what	 the	ecological	 interpretation	of	LiDAR-	PCs	 is.	We	 thus	
envision	a	potential	use	of	LiDAR-	PCs	in	species	distribution	models	
(Elith	&	Leathwick,	2009;	Warren	&	Seifert,	2011).	However,	if	the	aim	
of	a	study	is	to	explain	observed	ecological	patterns	using	LiDAR-	PCs,	
then	it	is	time	to	provide	the	interpretation	of	the	items	that	can	be	
extracted	from	our	analyses.	These	items	can	be	used	by	behavioural	
ecologists	 to	 undertake	 experiments	 with	 respect	 to	 observed	 be-
havioural	patterns,	or	by	applied	ecologists	and	practitioners	to	take	
actions	in	the	landscapes	they	manage.

F IGURE  3 Relative	probability	of	
selection w(x)	for	vegetation	characteristics	
(light	detection	and	ranging	point	cloud	
data, 10 m resolution) described as 

principal	axes	(PC1–PC5)	depending	on	the	
time	of	the	day	by	red	deer	(left	column)	
and	roe	deer	(right	column)	as	predicted	
by	resource	selection	functions	(RSFs)	for	
the	1-	hourly	fix	rates.	Rotation	matrices	
(central	column)	describe	the	loading	of	
vegetation	height	(from	laser	returns,	in	
metres)	on	each	principal	component	
axis.	Light	conditions	are	based	on	sun	
elevation,	simplified	to	twilight,	night	and	
day.	RSFs	were	built	using	parameters	
estimated	by	top	ranked	generalized	linear	
mixed-	effect	model	selected	in	Table	1.	
Shaded	areas	are	95%	conditional	CIs

−0.3 −0.1 0.1 0.3

0.0

0.5

1.0

1.5

2.0

2.5
twilight
night
day

PC1 values

w
(x
)

−0.10 0.00 0.10 0.20

0

10

20

30

40

50

PC1 loadings

Ve
ge

ta
tio

n 
he

ig
ht

 [m
]

−0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

2.0

PC1 values

w
(x
)

−0.4 −0.2 0.0 0.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PC2 values

w
(x
)

−0.20 −0.10 0.00 0.10

0

10

20

30

40

50

PC2 loadings

Ve
ge

ta
tio

n 
he

ig
ht

 [m
]

−0.3 −0.1 0.1 0.3

0.0

0.5

1.0

1.5

2.0

2.5

PC2 values

w
(x
)

−0.3 −0.1 0.0 0.1 0.2

0

5

10

15

PC3 values

w
(x
)

−0.15 −0.05 0.05

0

10

20

30

40

50

PC3 loadings

Ve
ge

ta
tio

n 
he

ig
ht

 [m
]

−0.3 −0.1 0.0 0.1 0.2

0

2

4

6

PC3 values

w
(x
)

−0.2 0.0 0.1 0.2 0.3

0

1

2

3

4

PC4 values

w
(x
)

−0.10 0.00 0.10 0.20

0

10

20

30

40

50

PC4 loadings

Ve
ge

ta
tio

n 
he

ig
ht

 [m
]

−0.2 0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PC4 values 

w
(x
)

−0.2 −0.1 0.0 0.1

0.0

0.5

1.0

1.5

2.0

2.5

PC5 values

w
(x
)

−0.3 −0.2 −0.1 0.0 0.1

0

10

20

30

40

50

PC5 loadings

Ve
ge

ta
tio

n 
he

ig
ht

 [m
]

−0.2 −0.1 0.0 0.1 0.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PC5 values

w
(x
)

Red deer (1−h fix rate) Rotation matrix Roe deer (1−h fix rate)



8  |    Methods in Ecology and Evolu!on CIUTI eT al.

4.1 | Fit first, explain later: time to explain (3rd goal)

Rotation	matrix	plots	reported	in	Figure	3	depict	the	relationship	be-
tween	vegetation	height	and	PC	loadings.	The	understorey	vegetation	
captured	by	negative	loadings	of	PC1	within	open	areas,	for	instance	
differs	to	that	represented	within	forest	areas	by	positive	and	nega-
tive	loadings	of	PC2-	4	and	PC5	respectively.	The	result	is	that	our	RSF	
models	could	depict	 fine-	scale	deer	selection	 for	 such	different	un-
derstorey	vegetation	depending	on	the	LiDAR	returns	recorded	along	
the	entire	vertical	structure	of	the	forest.	Whereas	deer	selected	for	
understorey	vegetation	within	open	areas	mostly	at	night	and	twilight	
(Figure	3,	PC1),	they	were	more	likely	to	use	understorey	vegetation	
within	forest	during	the	day	(Figure	3,	PC5),	thus	balancing	the	need	to	
access	to	forage	and	reduce	the	risk	of	being	spotted,	for	example	by	
humans	(Dupke	et	al.,	2016).	Because	we	avoided	subsetting	LiDAR	
returns	occurring	below	an	arbitrary	threshold	(e.g.	point	cloud	data	
limited	 to	 the	 first	2	m	above	 the	ground:	Ewald	et	al.,	2014;	Lone,	
van	 Beest,	 et	al.,	 2014),	 we	 could	 distinguish	 between	 structurally	
similar	ground	vegetation	which	occurred	in	different	ecological	con-
texts,	such	as	the	vegetation	within	open	areas	(Figure	3,	PC1)	vs.	the	

understorey	vegetation	beneath	forest	of	different	heights	(Figure	3,	
PC2–PC5).	Our	LiDAR-	PC	approach	was	therefore	able	to	disentangle	
the	selection	for	understorey	vegetation	at	unprecedented	fine	scale.

The	ability	of	each	PC	in	explaining	the	variance	in	the	10-	m-	resolution	
LiDAR	point	cloud	decreases	from	34%	in	PC1	to	less	than	15%	in	PC5	
and	even	less	than	1%	in	PC9	(Figure	2).	This	means	that	higher	ranking	
PCs	explain	major	patterns	in	the	LiDAR	data	(e.g.	PC1,	open	areas	vs. 
forest,	see	rotation	matrix	in	Figure	3),	whereas	lower	ranking	PCs	cap-
ture	complex	fine-	scale	differences	in	vegetation	structure	(e.g.	PC4,	for-
est	stands	with	and	without	understorey	vegetation).	Both	deer	species	
strongly	selected	for	the	environmental	variability	embraced	by	PC1-	5,	
confirming	the	importance	of	decomposing	the	three-	dimensional	com-
plexity	of	the	forest	into	multiple	principal	components.

Interpretation	of	selection	patterns,	however,	does	not	have	to	rely	
on	single	PCs.	The	statement	that	deer	select	for	negative	values	of	PC1	
and	thus	open	habitats	is	not	wrong,	in	principle,	but	it	clearly	oversim-
plifies	a	much	more	sophisticated	behaviour.	Selection	for	PCs	should	be	
interpreted	overall,	at	least	for	those	first	PCs	that	were	strongly	selected	
for	by	deer	in	our	empirical	example.	We	make	use	of	Figure	4	to	explain	
this	feature	of	LiDAR-	derived	PCs	values.	Each	habitat	type	depicted	by	

F IGURE  4 Principal	component	
(PC)	values	(M ±	SD)	for	each	level	of	
the	categorical	land-	cover	map	built	
from	the	interpretation	of	aerial	images	
of	the	Bavarian	Forest	National	Park,	
Germany.	The	figure	depicts	the	first	
three	PCs,	explaining	two-	thirds	of	the	
overall variability in light detection and 
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the	best	land-	cover	map	available	for	our	study	site	can	be	described	by	
a	unique	combination	of	PC	values.	Mature	forest	patches,	for	instance	
are	characterized	by	positive	values	of	PC1	and	negative	values	of	PC2	
and	PC3,	whereas	ecotones	are	characterized	by	negative	values	of	PC1	
as	well	as	PC2	and	PC3	values	close	to	zero.	In	terms	of	ecological	inter-
pretation,	this	means	that	when	deer	are	recorded	to	select	for	a	certain	
combination	of	PC	values,	this	pattern	corresponds	to	the	selection	of	a	
given	habitat	type.	Clearly,	this	exercise	is	performed	only	for	data	inter-
pretation,	whereas	the	model	has	been	trained	with	unclassified	data.

Researchers	also	have	the	option	to	further	improve	result	inter-
pretation	by	fitting	cluster	analyses,	random	forests	and	several	clas-
sification	methods	of	their	choice	on	significantly	selected	LiDAR-	PCs	
(Breiman,	2001;	Zuur	et	al.,	2007),	and	interpret	the	results	afterwards,	
for	example	by	validation	in	the	field.

Vegetation	 cross	 sections	 randomly	 selected	 in	 the	 study	 area	
(Figure	5;	Figures	S4	and	S5)	can	help	the	reader	to	better	appreciate	
how	the	variability	included	in	PCs	can	be	lost	using	common	land-	cover	
maps,	even	when	the	latter	are	of	the	highest	achievable	quality	(<5	m	
resolution	in	our	case).	Variation	in	the	vegetation	structure	in	a	mature	
deciduous	stand	(Figure	5),	for	instance	is	captured	by	varying	combina-
tion	of	PC1,	PC2	and	PC3,	whereas	the	land-	cover	map	does	not	have	

this	level	of	detail	(i.e.	polygon	assuming	homogenous	vegetation	inside	
its	area).	The	high	standard	deviation	in	Figure	4	indeed	reflects	the	high	
variability	in	PCs	within	each	“homogeneous”	land-	cover	map	category.

Finally,	we	reported	in	Figure	6	an	example	of	suitability	maps	for	
both	deer	species,	which	can	be	used	to	visualize	a	model’s	spatial	pre-
dictions	and	understand	the	type	of	forest	structure	selected	by	deer.	
This	type	of	map	can	be	used	by	practitioners,	to	identify	important	
spots	of	 the	 landscapes	they	wish	to	manage,	and	to	make	decision	
based	on	conservation	and	management	objectives.	RSF	scores	pre-
dicted	by	our	models	can	also	be	plotted	against	other	environmental	
covariates,	which	can	improve	our	understanding	of	the	structure	of	
the understorey vegetation selected by deer. This may be achieved 

by	depicting,	 for	example	the	relationships	between	RSF	scores	and	
fractional	vegetation	cover	of	the	understorey	vegetation	(Figure	S6).

4.2 | Cautionary notes to the readers: spatio- 
temporal autocorrelation and the use of PCs in 
regression analysis

We	ask	the	readers	to	pay	attention	to	our	informative	supplementary	
material	before	reproducing	our	methodology.	Firstly,	telemetry	data	

F IGURE  5 Comparison	between	(a)	light	detection	and	ranging	point	cloud	data,	(b)	PC	(principal	component)	values	and	(c)	land-	cover	
classification	for	a	300	×	10	m2	cross	section	within	the	Bavarian	Forest	National	Park,	Germany
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(like	 those	 used	 in	 this	 study)	 typically	 are	 temporally	 and	 spatially	
correlated,	and	this	will	often	be	transferred	to	model	residuals	and	
not	lead	to	valid	inferences.	Researchers	need	to	use	diagnostic	tools	
to	check	for	autocorrelation—which	we	did	not	find,	see	Appendix	S2,	
although	this	is	more	the	exception	rather	than	the	rule—and,	when-
ever	residual	autocorrelation	is	found,	include	spatio-	temporal	struc-
tures	in	their	models.	See	full	discussion	on	this	matter	at	the	end	of	
Appendix	S2	along	with	significant	literature	cited.	Second,	note	our	
cautionary	reminder	on	the	use	of	some	(but	not	all)	principal	compo-
nent	axes	in	regression	analysis	(Appendix	S3).

4.3 | LiDAR- PCs: a new tool in the ecological 
modelling toolbox

We	did	not	include	alternative	environmental	predictors	within	the	
LiDAR	models	because	building	the	best	possible	model	was	beyond	
the	 scope	of	 this	paper.	After	 screening	 for	 collinearity	 (Dormann	
et	al.,	 2013),	 LiDAR	 and	 non-	LiDAR	 derived	 predictors	 should	 be	
used	 as	 predictors	 in	 the	 one	 model	 to	 further	 improve	 predic-
tive	 and	 explanatory	 performances.	 Our	 suitability	 model	 could	

be	 slightly	 improved	 by	 adding	 NDVI	 and	 other	 spatio-	temporal	
variable	indexes	such	those	derived	by	airborne	hyperspectral	data	
(Wang,	 Franklin,	 Guo,	 &	Cattet,	 2010).	Hyperspectral	 data	 are	 an	
exciting	 prospect	 because	 they	 have	 been	 successfully	 applied	 in	
recording	 information	 regarding	 critical	 plant	 traits,	 discriminating	
tree	species	in	landscapes	(Nagendra	&	Rocchini,	2008)	and	estimat-
ing	nutritional	value	of	ground	vegetation	for	ungulates	(Schweiger	
et al., 2015).

We	showed	that	the	horizontal	resolution	matters	(10	m	vs.	5	m)	
and	 this	 should	 be	 carefully	 evaluated	 by	 users	 running	 sensitivity	
analysis	prior	to	fitting	ecological	models.	Note	that	this	may	depend	
on the ecological question under scrutiny and the scale at which the 

ecological	process	occurs	(Schneider,	2001).	Also,	our	results	may	sug-
gest	that	LiDAR	data	have	stronger	predictive	ability	when	their	hori-
zontal	resolution	(10	m)	matches	that	of	satellite-	telemetry	relocation	
error	(10	m),	where	it	is	much	less	affected	by	noise	due	to	resolution	
mismatch	(Frair	et	al.,	2010).

Animal	 resource	 selection	 studies	 and	 species	 distribution	
models	 are	 strongly	affected	by	 the	 scale	of	 the	analyses	and	 the	
resolution	of	environmental	predictors	 (Boyce,	2006;	Seo,	Thorne,	

F IGURE  6 Relative	probability	of	selection	(rescaled	resource	selection	function	[RSF]	values)	predicted	by	best	ranked	models	in	the	
Bavarian	Forest	National	Park	for	red	deer	“Burgl”	and	roe	deer	“Gitte”	tracked	with	satellite	telemetry	(1-	h	fix	rate,	spring-	summer	locations	
surrounded	by	minimum	convex	polygons).	Scenarios	for	both	animals	are	for	twilight,	although	practitioners	can	vary	parameters	plugged	into	
the	RSF	equation	and	predict	different	scenarios.	Small	insets	depict	the	relationship	between	predicted	relative	probability	of	selection	and	
actual	vegetation	structure	(i.e.	light	detection	and	ranging	returns)	for	10	×	10	m2	grid	cells	in	which	selection	was	high	(dark	green)	and	low	
(light	green)	for	both	species.	White	patch	in	the	red	deer	sector	(left)	corresponds	to	a	lake	(RSF	=	0)
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Hannah,	&	Thuiller,	2009).	Uncertainties	in	SDMs	can	indeed	result	
from	the	quality	of	environmental	data	 (Seo	et	al.,	2009),	and	sur-
rogate	 environmental	 predictors	 may	 yield	 biased	 species	 habitat	
suitability	estimates	(Heikkinen	et	al.,	2014),	which	can	be	improved	
by	fine-	scale	LiDAR	data	(Nijland	et	al.,	2014).	The	particularly	de-
tailed	 selection	 patterns	 that	 we	 described	 in	 our	 study	 (e.g.	 for	
understorey	vegetation)	 is	an	example	of	how	we	can	improve	our	
understanding	of	fine-	scale	habitat	selection	patterns	in	large	herbi-
vores,	with	the	potential	to	tackle	more	specific	hypotheses	on	their	
foraging	ecology	and	anti-	predator	strategies	within	multi-	predator	
landscape	of	fear	(Lone,	Loe,	et	al.,	2014).	Herein	we	stress	the	im-
portance	to	primarily	fitting	ecological	models	able	to	exploit	LiDAR	
data	variability,	which	can	secondarily	be	manipulated	after	 fitting	
the	model	in	order	to	improve	the	interpretation	and	understanding	
of	observed	patterns.

In	conjunction	with	GPS	 telemetry	data,	LiDAR-	PCs	provide	an	
excellent	chance	to	assess	how	animal	movement	is	affected	by	veg-
etation	 structure.	 Therewith,	 new	 insights	 and	 finer	 details	 about	
how	 animals	 make	 decisions	 based	 on	 habitat	 structure	 can	 been	
achieved.	Davies	and	Asner	 (2014)	 strongly	 recommended	 that	 fu-
ture	animal	ecology	studies	will	benefit	by	placing	higher	priority	on	
metrics	 produced	 by	 LiDAR	 such	 as	measurements	 related	 to	ver-
tical	 structural	 heterogeneity	 and	 complexity.	This	 is	 the	 best	way	
to	proceed	if	the	goal	of	the	research	is	testing	specific	vegetation-	
structural	 hypotheses.	 However,	 we	 suggest	 our	 approach	 as	 the	
alternative	to	the	use	of	LiDAR-	based	metrics	whenever	ecological	
modellers	need	to	retain	the	full	variability	in	point	clouds,	and	boost	
predictive	ecological	models	such	as	species	distribution	and	habitat	
suitability models.
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