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ABSTRACT

Aim This study focuses on the influence of methodological choices on the predic-
tive performance of macroecological models (MEMs), i.e. statistical models
designed to predict patterns of biodiversity using environmental predictors. We
emphasize the influence of three methodological choices: (1) the choice of the
currency in which the abundance of each species is measured, i.e. numbers of
individuals or biomass; (2) the rules used to define the species assemblage under
focus, i.e. broad communities or refined ecological guilds; and (3) the influence of
rare over common species in the biodiversity measure.

Location The effects of these choices are investigated using an exhaustive dataset
on the fish fauna of the continental shelf of the Barents Sea.

Methods We conducted an analysis of 220 models resulting from all possible
combinations of the three methodological choices. For each, we evaluated the
predictive performance through an iterative cross-validation process.

Results All methodological choices we investigated strongly affected the predic-
tive performance of MEMs. High predictive performances were obtained when
using biomass instead of numbers of individuals, when focusing on narrow eco-
logical guilds composed of species sharing the same ecological traits and when
using diversity measures that give high weight to rare species.

Main conclusions We recommend that future projections of biodiversity pay
more attention to abundance currency, ecological homogeneity of focal species
assemblages and the diversity metric used, and systematically investigate these
methodological choices prior to producing biodiversity forecasts. Splitting a whole
set of species into ecological guilds appears to be a promising practice, leading to a
selected set of MEMs with high predictive performances and more detailed fore-
casts on the fate of diversity.
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INTRODUCTION

Forecasting patterns of biodiversity under climate change has

become a major field of research in applied ecology (Thuiller,

2003; Thomas et al., 2004; Ferrier & Guisan, 2006; Botkin

et al., 2007; Cheung et al., 2009; Sommer et al., 2010; Austin &

Van Niel, 2011; Mokany & Ferrier, 2011). Models employed for

that purpose can be purely correlative (Sommer et al., 2010) or

may include a mechanistic part (Dormann et al., 2012) to

account for limitations due to ecological processes (Boulangeat

et al., 2012a; Mokany et al., 2012). These models may be

called macroecological models (MEMs; Guisan & Rahbek,

2011) and their projections of biodiversity under climate

change scenarios strongly rely on the statistical relationships

between biodiversity patterns and a set of environmental

predictors.
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Biodiversity forecasts are often used to draw the attention of

stakeholders to the magnitude of the biodiversity crisis (see,

for example, Worm et al., 2006; Sommer et al., 2010).

However, the predictive capabilities of MEMs are often poorly

known and the accuracy of their projections will only be deter-

mined decades from now. An objective assessment of the pre-

dictive power of MEMs and a better understanding of what

controls their predictive accuracy are therefore critically

needed. Several modelling approaches have been developed

and combined to reproduce reliably observed data (Thuiller,

2003; Wood, 2006; Elith et al., 2008; see Beale et al., 2010, for a

comparison of spatially explicit methods), but the selection

and correct implementation of these methods should be the

last stage of the analytical process. When biodiversity is the

focal response, several important methodological choices have

to be made with respect to the size, type and content of the

biological dataset, the set of environmental covariates, and the

choice of the biodiversity metric to be modelled before apply-

ing a method. Depending on these choices, the predictive

power and the resulting forecast of MEMs are likely to vary. In

the field of species distribution models, for example, forecasts

may vary greatly merely as a consequence of the somewhat

arbitrary choice of different sets of predictors (Synes &

Osborne, 2011).

In this study, we conducted a thorough investigation of three

important methodological choices, searching for those that

maximize the predictive power of MEMs and evaluating how

they affect the conclusions drawn from biodiversity forecasts.

These three choices relate to: (1) the currency used to measure

species abundance; (2) the choice of the species assemblage for

which a biodiversity metric is computed; and (3) the choice of

the biodiversity metric itself. Changes in currency alter the

frequency distributions of species, i.e. the species abundance

distribution (SAD), which in turn affects the value of any bio-

diversity metric other than species richness (Morlon et al., 2009;

Magurran & Henderson, 2012). The species composition of

the modelled community might affect the biodiversity–

environment relationship, leading to different numerical models

and predictions. Finally, diversity metrics can be sorted accord-

ing to the weight they give to frequent over rare species (Hill,

1973) and the predictive power of MEMs might change along

this gradient.

Any possible realization of these three methodological

choices will henceforth be referred to as a ‘modelling option’.

The current study investigates the predictive power of 220 such

modelling options, encompassing conventional choices for

abundance currency, community composition and biodiversity

metrics. The comparison is based on a comprehensive dataset

of 81 fish species collected over 5 years by bottom trawling

during an ecosystem survey in the Barents Sea (Olsen et al.,

2011). This data set has several features that make it well suited

for such a study. First, the data have a fine spatial resolution

and can be viewed as point-samples of demersal communities.

Second, over the years a large number of samples have been

collected, allowing us to split the data into train and test

subsets. Third, data have been simultaneously recorded in two

abundance currencies, namely number and biomass, allowing

a direct comparison without relying on allometric relation-

ships. Fourth, an extensive ecological knowledge on the

ecology of the 81 fish species considered in our study has accu-

mulated and been compiled, allowing for an easy classification

of the sampled species into ecological guilds based on different

species attributes.

METHOD

General approach

Analyses were based on three main data matrices: a N × S

‘species’ table summarizing information on the relative abun-

dance of the S species across N sampling sites, a N × P ‘predictor’

table summarizing information on the P environmental predic-

tors across the same N sampling sites and a S × T ‘trait’ matrix

summarizing information about T ecological traits across the S

species. The trait matrix was used to construct communities of

species according to specific ecological criteria, i.e. guilds. A total

of 220 MEMs were constructed resulting from individual mod-

elling options with specific choices of (1) abundance currency,

(2) guild composition and (3) biodiversity metric. For each

modelling option, the spatio-temporal pattern of the biodiver-

sity metric was modelled as a function of environmental predic-

tors, and the predictive power of the resulting MEM was

assessed. The different steps of our methodological approach are

summarized in Fig. 1.

The modelling options

We contrasted two commonly used currencies for species abun-

dance: number of individuals and biomass (Morlon et al., 2009).

As this choice affects the resulting shape of the SAD, we refer to

species individual distribution (SID) when the currency is

number and species biomass distribution (SBD) when the cur-

rency is biomass.

We considered five ways of forming ecological guilds. The

first one corresponded to the most common approach, i.e. a

broad taxonomic guild including all species of a given phylum,

here fish (n = 81). The four other approaches are attempts to

split the broad taxonomic guild into ecological guilds whose

species share common ecological properties. Using a life-

history trait matrix (Table S1 in Supporting Information)

gathered from ‘FishBase’ (http://www.fishbase.org) and its

Norwegian equivalent ‘Fiskipedia’ (http://www.fiskipedia.no/),

the fish species were grouped according to their habitat

(strictly demersal species, n = 54, versus species possibly

occurring in pelagic environment, n = 27), feeding behaviour

(piscivorous fishes, n = 27, strictly benthivorous species, n = 29,

and species including planktonic prey in their diet, n = 25),

reproductive performance (low-fecundity fishes, n = 42, versus

high-fecundity fishes, n = 39) and a cluster analysis of the

complete life-history trait table, resulting in three groups of

species (termed group 1, n = 43, group 2, n = 19, and group 3,

n = 19; see Text S2 for details on the cluster analysis).
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As biodiversity metrics we considered 10 measures taken

along the Hill diversity profile (Hill, 1973). A Hill diversity of

order q, denoted qD, integrates most of the well-known diver-

sity measures in a single framework: qD equals species richness

when q = 0; eH (with H being the Shannon diversity index)

when q approaches 1 (the Hill diversity is not defined when

q = 1; see Hill, 1973); the inverse Simpson index when q = 2;

and the dominance index when q is approaching infinity.

Decreasing q increases the weight of rare species in the biodi-

versity measures. The Hill diversity profile is simply the graph

showing the evolution of qD as q increases from 0 to large

values, and is more informative about biodiversity than any

individual index (Hill, 1973). The Hill diversity additionally

has the advantage of measuring biodiversity as ‘effective species

numbers’ (Jost, 2006; Tuomisto, 2010). It is based on species

frequencies, which can be measured in different currencies.

The value qD is variable for low values of q, while it quickly

reaches an asymptote when q > 2 (Hill, 1973). In this study, qD

was measured with q taking the values of 0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.75, 1, 2 and 10.

We used the following notation to describe a modelling

option: currency/guild/q. For example ‘SBD/low-fecundity/0.5’

corresponds to the modelling option where the abundance cur-

rency for species is biomass, the guild under focus comprises

only species with low fecundity and the diversity measure used is
0.5D. The combination of two currencies, 11 guilds (1 broad and

10 splits) and 10 biodiversity metrics resulted in 220 modelling

options (Fig. 1a).

MEM formulation and evaluation

Each modelling option corresponds to a statistical MEM that

regresses observed biodiversity patterns against a set of environ-

mental predictors. The model formulation was carefully chosen

after a thorough model selection process (Text S3), which iden-

tified a narrow set of covariates suitable across all modelling

options considered. For the sake of simplicity, we decided on a

common model formulation for all the modelling options,

incorporating the main environmental drivers of our study area,

the Barents Sea. The MEM was formulated as a generalized

additive model (GAM), which allows the modelling of nonlinear

relationships between diversity patterns and environmental

drivers. Spatial autocorrelation was weak in model residuals (see

Text S3), meaning that we did not have to use spatial GAMs that

had an unrealistically long computation time for the needs of

our analysis. The model is an additive series of six smooth func-

tions, each specific to one type of covariate in the Barents Sea:

bottom depth, bottom temperature, bottom salinity, surface

temperature, surface salinity, surface chlorophyll a concentra-

tion and bottom current strength. A detailed description of the

model formulation and associated diagnostic plots is available in

Text S3.

The predictive performance of a modelling option is evalu-

ated through the following process (Fig. 1b): (1) a year is chosen

and separated from the data; (2) a ‘training’ dataset is selected

using half of the remaining data (without the evaluation year);

(3) the model is fitted using that ‘training’ dataset; (4) the fitted

model is used to predict the ‘evaluation’ year; (5) the match

between observed and predicted values is measured through

Pearson’s correlation and through linear regression where

observations are the response. For each year in the data, steps

2–5 are repeated 100 times, so as to get 100 evaluations. A perfect

model would have a correlation of 1, a slope of 1 and an inter-

cept of 0. As we wished to test whether selecting ecological guilds

offers a consistently higher predictive power than randomly

assembling species, 100 random guilds were assembled for each

of the 10 guild splits, and the evaluation process was applied

again, once for each random guild. Random guilds were assem-

bled by drawing randomly the same number of species as in the

guild split under focus; for example, a random guild for the

demersal guild was built by randomly selecting 54 species from

the 81 fish species available. No random splits were available,

however, for the whole fish community.

Given a modelling option, an evaluation year and an evalu-

ation criterion, we can compare the set of 100 measures of

predictive performance obtained with a defined guild with the

corresponding set obtained with a random guild. By subtract-

ing each element of the former from each element of the latter,

we obtain 10,000 estimates of the differences in predictive per-

formance between the modelling option under focus and its

counterpart based on random guild. In that way we estimated

the probability of increased MEM predictive performance

Figure 1 Schematic representation of our methodological
approach. (a) Methodological choices leading to the building of
modelling options. (b) Evaluation of the predictive performance
of a given modelling option (AUC, area under the curve). Note
that the ‘model selection’ process referred to in the upper-left box
is described in Text S3.
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when guilds were assembled according to specific ecological

criteria.

Investigating the relevance of guild splitting

To illustrate how biodiversity forecasts can vary depending on

the modelling options, we compared the biodiversity patterns

predicted from a MEM built on the broad ‘fish’ community with

summed predictions from MEMs based on guild splitting pre-

senting good predictive performance. For that exercise, we are

restricted to setting q = 0 as it is the only case when the sum of

the diversity measure for each guild equals the diversity measure

for the broad community. Biodiversity patterns will be predicted

for a set of hypothetical situations corresponding to a particular

environmental change in the Barents Sea.

Study area and model: demersal fauna of the
Barents Sea

The Barents Sea continental shelf (1,600,000 km2) is delimited

by the Norwegian and Russian coast, Novaya Zemlya Island,

Franz Joseph Land, the Svalbard Archipelago and a shelf break

toward the deep ocean in the west (Jakobsen & Ozhigin, 2012).

Warm and salty Atlantic waters are brought from the south by

the Norwegian Atlantic Current and extend over the western

and central parts of the Barents Sea, while cold and fresh Arctic

water dominates in the northern part. The area where these two

main water masses meet is called the Polar Front. The northern

areas are seasonally covered in ice, and in winter the edge of the

ice usually follows the oceanic fronts.

The demersal community of the Barents Sea has been

sampled each summer (August–September) since 2004

following a regular sampling scheme of stations separated by

30–40 km (Anonymous, 2010). Data from 2004 to 2008 were

used in this analysis. At each station, biological samples were

taken with a Campelen 1800 bottom trawl towed on double

warps (Johannesen et al., 2012). The standard towing time was

15 min at 3 knots, equivalent to a towing distance of 0.75 nau-

tical miles. On board, the catch was sorted by species, counted

and weighed, so that numbers and biomasses are documented

for each species collected. For each trawl, numbers and

biomasses were standardized by towing distance. The dataset we

used for this study comprised 2316 sampling stations in which

81 fish species (Table S1) were identified. The number of sam-

pling stations per year ranged between 355 and 538.

RESULTS

Choosing an evaluation year and an
evaluation criterion

The results from this study cannot all be presented in the main

text. We chose to present them for one evaluation year (2008)

and one evaluation criterion (Pearson’s correlation), which are

well representative of the analyses. The results for all evaluation

years and evaluation criterions are available in Appendix S4.

Predictive power of MEMs

Figure 2 displays a few selected examples to show how the pre-

dictive power of MEMs from different modelling options can be

compared. Figure 2(a) shows that the predictive power of the

modelling option SBD/all fishes/q = 1 was higher than the pre-

dictive power of the modelling option SID/all fishes/q = 1.

Figure 2(b) illustrates that restricting the analysis to the 54

demersal species gave a slightly better result in terms of predic-

tive performance than selecting 54 species randomly, but it was

still in the same range. Figure 2(c) shows that the predictive

power of the modelling options SID/all fishes decreased as q

increased. Figure 2(d) repeats the comparison shown in

Fig. 2(a) but with a guild composed of species living partly or

fully in the pelagic area. The use of this guild clearly led to an

increase in predictive power when compared with a random

guild (Fig. 2e). Finally, Fig. 2(f) shows that the predictive power

of the modelling options SBD/pelagic reached a maximum for q

values between 0.2 and 0.4. These are only a few comparisons

among the possible 220 modelling options, but they illustrate

the most common patterns: a higher predictive performance is

usually reached with SBD-based MEMs and with biodiversity

metrics of low-q order. In addition, large heterogeneities of pre-

dictive performance are revealed across guilds.

These general patterns can be seen from the comparison

between the 220 modelling options (Fig. 3, Appendix S4). The

predictive power of SBD-based MEMs was generally higher than

that of the corresponding SID-based MEMs. Six out of 10 eco-

logical guilds (pelagic, ichtyophagous, low fecundity, high

fecundity, group 1 and group 3) led to MEMs with a higher

predictive power compared with a random assemblage of fish

species. A less pronounced improvement was observed for the

group 2 and the planktophagous guild, and for the demersal and

strictly benthivorous guilds predictive performances were no

better than with random guilds. Predictive power also changed

along the diversity profile, according to one of the two patterns

illustrated in Fig. 2(c) and (f): either a strictly decreasing pre-

dictive power with increasing q or a dome-shaped variation with

an optimal predictive power for q values between 0.1 and 0.5, the

latter being more common in SBD-based MEMs than in SID-

based MEMs.

In summary, when taking 2008 as the evaluation year and the

Pearson correlation as the evaluation criterion, the highest pre-

dictive power was achieved when the abundance currency is

biomass, when fish guilds were based on fecundity and when the

diversity metric was the Hill diversity of order q between 0.2 and

0.5. The same general pattern with some moderate variations

across years and guilds is observed with the other evaluation

years and when using the slope and intercept of the linear

regression as evaluation criterion (Appendix S4).

Choosing a relevant model for fish diversity in the
Barents Sea

Our investigation across the 220 modelling options revealed that

splitting the fish community into low- and high-fecundity
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species provided two MEMs (SBD/low fecundity/0.1–0.5 and

SBD/high fecundity/0.1–0.5) with high predictive perfor-

mances. They were used to predict biodiversity patterns for the

current time period (Fig. 4, Text S3). The maps show that both

guilds exhibited a very different and almost reversed spatial

pattern of biodiversity, with high biodiversity of the low-

fecundity guild clearly associated with the north-eastern Arctic

region of the Barents Sea, while biodiversity for the high-

fecundity guild peaked in the south-western Atlantic area. These

differences can be explained by the shapes of some of the

diversity–predictor relationships (Fig. 5a) that are clearly

reversed between the low- and high-fecundity guild, while the

shape of the diversity–predictor relationship obtained for the

all-fishes guild is simply a mixture of the response of the two

fecundity-based guilds.

Biodiversity forecast: total versus guild split
approach

To further illustrate the advantage of using guild splitting when

forecasting diversity patterns under an environmental change

scenario, we contrasted species richness (q = 0) predictions from

a MEM based on the all-fishes guild with the summed predic-

tions of two MEMs focusing on the high- and low-fecundity

guilds. We focused on species richness because it is insensitive to

the choice of the abundance currency and it can be summed

across split guilds to ease the comparison between split and

non-split options. The environmental scenarios we used for the

comparison were based on the qualitative assessment of pre-

dicted changes for the Arctic area (ACIA, 2004) that suggests an

increase in air temperature of approximately 4–8 °C and an

Figure 2 Predictive power (y-axis) of some selected modelling option (x-axis). Boxplots show the extent of 100 predictive power estimates
(boxes show the median and quartiles, whiskers extend to the minimum and maximum values). The upper row (a, b, c) focuses on the all
fishes and demersal guilds, the lower row (d, e, f) focuses on the pelagic fish guild. The first column (a, d) shows example of results when
contrasting two abundance currency (left, species individuals distribution SID; right, species biomass distribution SBD) and the second
column compares modelling options based on defined (left) versus random (right) communities; the third column (c, f) shows the
evolution of predictive power along the Hill diversity profile. The order of Hill’s diversity is represented by the parameter q.
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increase in ice melting and precipitation that will reduce salinity.

Since reliable quantitative predictions for sea temperature and

salinity are not available at our spatial resolution, we simply

built a set of four scenarios by adding 1, 2, 3 or 4 °C to the sea

temperature fields and reducing salinity fields by 0.05, 0.1, 0.15

and 0.2‰, respectively. We stress that these scenarios are hypo-

thetical, and that their purpose is to compare the behaviour of

the modelling approaches. Figure 5(b) shows the results

obtained for scenario 4, and the results for all scenarios are

available in Fig. S5.

Focusing only on the total species richness, predictions

from the total and split approaches produced similar spatial

patterns (Fig. 5b), with an important increase predicted in the

south-western Barents Sea. With the guild split, however, the

predicted increase saturates more quickly (Fig. 5b). More

importantly, guild splitting allows us to follow the fate of

species richness for low- and high-fecundity fishes separately,

revealing an important reconfiguration of the fish community

in the central and northern Barents Sea that could not be pre-

dicted if the analysis was restricted to a single MEM. As low-

and high-fecundity diversity exhibit contrasting responses to

temperature (Fig. 5a), the apparent stability of species richness

in the central and northern Barents Sea predicted by the total

model results from a large decrease in the number of low-

fecundity species compensated by an increase in the number of

high-fecundity species.

Figure 3 Expected predictive power (median of the 100 estimates) for the 220 modelling options. Left panel, species individuals
distribution (SID)-based macroecological models (MEMs). Right panel, species biomass distribution (SBD)-based MEMs. y-axis, guild
definition, x-axis, Hill diversity profile. White stars show modelling options where the probability that the predictive power is higher than if
guilds were randomly assembled is < 0.05. White dots correspond to the same probability < 0.1. Abbreviations for guilds: tot, all fishes; dem,
demersal fishes; pel, pelagic fishes; icht, ichtyophagous fishes; ben, benthivorous fishes; pla, planktivorous fishes; low, low-fecundity fishes;
hig, high-fecundity fishes; gr1, group 1; gr2, group 2; gr3, group 3.

Figure 4 Predicted biodiversity patterns (Hill diversity of order 0.2) for the current time period (2004–08) for the low-fecundity fish
community (left panel) and the high-fecundity fish community (right panel).
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DISCUSSION

Methodological considerations

To test the effects of modelling choices on predictive perfor-

mance, 220 different modelling options were evaluated. The

evaluation process was thorough, testing several evaluation

years separately and using three evaluation criteria. Our results

are consistent whatever the evaluation year and statistic chosen

(Appendix S4). However, our evaluation process is bounded to

our study area and reveals nothing about the predictive ability of

our MEM in other areas or for communities other than fishes in

the Barents Sea. The fact that we used non-spatially explicit

models is a limitation. The investigation of the spatial structure

in the data and in the model residuals (Text S3) revealed that

response variables were strongly correlated in space over large

scales (up to 200–300 km) and in time (across years). Model

residuals were only moderately spatially correlated, but at a

smaller spatial scale (c. 50–100 km), which corresponds to clus-

ters of two or three sampling stations. Furthermore the model

residuals were no longer correlated through time, which sug-

gests that our model was capturing well the large-scale patterns

and year-to-year variability of diversity. We think that our use of

non-spatial models does not invalidate the result of our com-

parison across modelling options. However, once a set of suit-

able MEMs has been identified, the implementation of their

spatially explicit counterpart, if possible, should constitute a

natural follow-up.

Similarly, for the sake of simplicity, we restricted our analysis

to purely correlative MEMs. But our results are also relevant for

their semi-mechanistic counterpart, even though the latter may

achieve higher predictive performance due to their better

account of ecological processes.

Appropriate methodological choices improve the
relevance of MEMs

Many studies concerned with the prediction of biodiversity

patterns focus on the development of modelling techniques

(Thuiller, 2003; Gotelli et al., 2009; Guisan & Rahbek, 2011;

Figure 5 Expected change in species richness under environmental change (scenario 4) as predicted by two macroecological models
(MEMs) for low- and high-fecundity fishes and one MEM focusing on all fishes: (a) example of statistical relationships between
biodiversity and environmental predictors modelled by the MEM; (b) expected change in species richness according to the all-fishes and
guild-split approaches.
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Mokany & Ferrier, 2011). Our work clearly demonstrates that

simple methodological choices such as abundance currency, bio-

diversity metric and community assemblage also lead to differ-

ent models with different predictions and varying predictive

powers.

First, the predictive power of MEMs was affected by the

choice of the abundance currency. The superiority of SBD-based

MEMs was clear for most of the guilds considered (Fig. 3,

Appendix S4). Recent theoretical work (Morlon et al., 2009;

Henderson & Magurran, 2010; Magurran & Henderson, 2012)

revealed that observed differences between SID and SBD in

various communities are mediated through the currency upon

which the selection pressure operates most. In the case of the

Barents Sea, our results suggest that environmental pressure is

primarily exerted on biomasses, that is, environmental effects on

energy allocation between species might contribute more to the

shaping of the species frequencies than stochastic demographic

processes controlling the numbers of individuals.

Second, biodiversity metrics giving more weight to rare

species (low q values) led to a higher predictive power than

biodiversity metrics giving more weight to abundant species.

This result emphasizes the role played by rare species in total

biodiversity patterns and contrasts somehow with studies focus-

ing on species range (e.g. Jetz & Rahbek, 2002; Lennon et al.,

2004), which found that geographical patterns of biodiversity

were largely predictable from occurrences of common and

widespread species, while rare species were rather erratic, unpre-

dictable elements. Species richness (diversity of order q = 0) is

usually well predicted, but can be outperformed by diversity

metrics with a slightly higher Hill number (i.e. 0.1 ≤ q ≤ 0.5), as

in the case of the SBD-based MEMs of the pelagic guild,

ichtyophagous guild and low- and high-fecundity guilds. Diver-

sity of order q > 0 is sensitive to both the number of species

present and the shape of the SAD, making it more informative

than species richness alone. It is therefore interesting to note that

these metrics, despite their higher complexity, can still be pre-

dicted with similar or better performance than species richness.

Third, guild splitting led to more detailed prediction of the

fate of a community than a single MEM encompassing all

species. The relationships between biodiversity and environ-

mental predictors can be very different between guilds. Model-

ling these differences explicitly, rather than pooling all species,

resulted in distinct models predicting distinct biodiversity pat-

terns, a more detailed description of the relationships between

environmental predictors and biodiversity, and ultimately more

detailed predictions. Furthermore, as the prediction relies on a

single model, it may be more sensitive to boundary conditions

than a set of carefully chosen guild-based MEMs, as suggested by

the differences in predicted species richness between the guild

splitting approach and the total approach in the species-rich

area. The comparison between the predictions of an all-fishes

MEM and the summed predictions of a low-fecundity and a

high-fecundity MEM (Fig. 5b) illustrates well the additional

information obtained with guild splitting. Without it, the

emphasis would be on the increase in species richness in the

south-western area. With it, one important piece of information

is added: reconfiguration between the low- and high-fecundity

communities in the central and northern Barents Sea. Such

information is of crucial interest, as it may trigger large changes

within the food web that would stay unnoticed with a single

all-fishes MEM.

To be efficient, guild splitting requires extensive investigation:

MEMs based on the benthivorous guild, for example, had a

rather poor predictive power (Fig. 3), even though they focus on

a well-defined guild of organisms that share a precise trophic

trait. We do not have a clear explanation for why some group-

ings such as the fecundity-based split outperformed other ones,

but we think this could be a good starting point for further study

aiming at understanding the ecology of the demersal commu-

nity in the Barents Sea. Relevant guild splits may be very difficult

to identify a priori, and therefore we recommend the explora-

tion of modelling options as a standard practice for MEM-based

projections of biodiversity. Our study shows that it is feasible to

carry out such a careful examination, and how to test statistically

the efficiency of guild splitting using random splits.

Sometimes the extent to which these methodological investi-

gations have been carried out is not fully documented. Often

future projections of biodiversity rely solely on species richness

(i.e. q = 0) and consider a single species pool mixing hundreds to

thousands of species (Diniz-Filho & Bini, 2005; Kreft & Jetz,

2007; Woodward & Kelly, 2008; Sommer et al., 2010; Belmaker

& Jetz, 2011). More generally, studies attempting to link biodi-

versity to environmental conditions consider only one species

assemblage (e.g. Lobo & Martín-Piera, 2002; Cayuela et al.,

2006; Kaboli et al., 2006; Kreft & Jetz, 2007; Woodward & Kelly,

2008; Algar et al., 2009; La Sorte et al., 2009; Sommer et al.,

2010; Dunstan & Foster, 2011) or different species assemblages

broadly taxonomically defined (e.g. ‘birds’, ‘reptiles’, ‘mammals’,

‘amphibians’: Graham et al., 2006; Araújo et al., 2008; Axmacher

et al., 2011, Belmaker & Jetz, 2011). Exceptions exist, though. In

more localized studies, communities are usually more narrowly

defined, either taxonomically (Beck et al., 2011; Ekschmitt et al.,

2003) or functionally (Henry et al., 2010). Steinmann et al.

(2009), for example, made a thorough comparison by contrast-

ing the predictive efficiency of models of species richness for 40

functional groups of perennial herbs. They did not find clear

improvements for species richness modelling when species were

split into functional groups. Still, they remarked on the potential

of such an approach for increasing understanding. Boulangeat

et al. (2012b) proposed a method based on functional similarity

to split a whole community into functional subunits that are

appropriate for the purposes of diversity forecasting. It is

notable that the most detailed studies in this field focus on

plants – well-known, sampled and documented study models.

Our work suggests that these approaches are also highly appro-

priate and can be efficiently implemented in the case of much

less well-documented communities. In our study, splitting com-

munities according to a well-defined ecological trait proved to

be at least as effective as splitting according to hierarchical clus-

tering of life-history traits. But hierarchical clustering may still

be useful when analysing communities of hundreds of species

with known traits.
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CONCLUSION

Biodiversity metrics that account for the relative frequency of

species (q > 0) might be more predictable than species richness

(q = 0), provided that they still give an important weight to rare

species (q < 0.5). Choices related to abundance currency and

guild splitting should be systematically investigated as part of

biodiversity modelling. One can expect that guild splitting, i.e.

the use of demographically, physiologically or ecologically

homogeneous communities, will provide sound and detailed

predictions of change in diversity patterns, based on a relatively

restricted set of MEMs with high predictive power. Hopefully,

such practice will increase the ability of scientists to anticipate

the effect of global change on biodiversity.
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Appendix S4 Exhaustive set of figures for the comparison across

the modelling options, including all evaluation years and cri-

teria. See readme for details.

Figure S5 Species richness predictions for the low-fecundity

guild, the high-fecundity guild and the all-fishes guild obtained
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