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Abstract 

In ecology, coexistence mechanisms play a major part in explaining the maintenance of biodiversity.  

Many previous studies have examined the different mechanisms and their properties with the help of 

analytical models and simulations. While these studies concentrate on understanding one mechanism 

in detail, here the focus lays on the distinction between different mechanisms. The idea is to identify 

every one of them by looking at their times series data. Hence, time series were created, with a time 

discrete two species model. Then I suggest two different approaches to distinguish the mechanisms 

based on characteristic patterns that occur in the simulated population dynamics. For the 

differentiation, I introduce five assessment tools that quantify the observed patterns. The validation of 

this differentiation showed that it is possible, to significantly distinguish the mechanisms for fixed 

parameters. The combinations of coexistence mechanisms could be identified less significantly and 

not for all combinations. For alternating parameters, the significance was reduced as well. Even 

though, the assessment tools might still find use in indicating coexistence mechanisms and should be 

tested on field data. Further research needs to be done to examine the combinations of coexistence 

mechanisms. 
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1. Introduction 

1.1 Coexistence 

The knowledge of how species may coexist gives insight in processes of species diversity maintenance 

and thus how biodiversity is even possible. Because this is a major question in ecology, over the last 

decades a lot of research was done to get the principles of coexistence in order and to quantify them. 

The most general classification of coexistence is stability: Coexistence can be stable or unstable. 

Unstable coexistence has a certain tendency and usually covers a small span of time until one species 

gets excluded. Therefore it is rather unimportant considering the question of species diversity in 

ecology. Stable coexistence has no tendency and covers large timespans due to the capability of 

species facing extinction (low density), to recover (CHESSON 2000). Whenever referred to coexistence 

in this study, it actually means stable coexistence because of the non-relevance of unstable 

coexistence. 

A basic requirement for stable coexistence of two competing species is that both are able to recover 

from low density (which also means that each species could invade a community dominated by the 

other species). This criterion is referred to as invasibility criterion (TURELLI 1981) and is fulfilled if 

the geometric-mean growth rate of each species is greater than 1 in a community dominated by the 

other species (CHESSON 1989).  

In general, coexistence mechanisms can have equalizing and/or stabilizing effects on communities. 

Equalizing effects lower the fitness differences between the species. Species with similar fitness are 

less able to competitive exclude each other. Stabilizing effects enable species facing extinction to have 

a positive per capita growth rate (CHESSON 2000). This grants the species with low population density 

(the invader) the possibility to recover. Equalizing effects alone can only slow down competitive 

exclusion. Stabilizing effects are necessary to fulfill the invasibility criterion and thus allow 

coexistence. Usually the invasibility criterion is fulfilled if intraspecific competition is lower than 

interspecific competition for a species with low population density. 

Holt (2001) suggested three different classes of conditions promoting coexistence:  

1. Species may coexist in a closed, temporally constant world if they experience different 

limiting factors at the spatial scale of the local community; this includes classical niche 

partitioning of resources, as well as mechanisms involving predation and parasitism, and 

direct interference 

2. Species may coexist, even though they experience the same limiting factor, if the 

environment is temporally variable and species respond differently to this temporal variation 

(temporal niche partitioning) 
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3. Species may coexist if the environment is spatially open; this includes spatial niche 

partitioning at scales broader than local community and mechanisms such as colonization-

competition tradeoffs in meta-populations 

If we look at a spatially closed environment the third class gets irrelevant. As there are mechanisms 

which not only make coexistence possible in a variable environment (class 2) but need it to function 

(e.g. storage effect, nonlinearity of competition (RNC)) we may as well refer to them as “fluctuation 

dependent mechanisms” (CHESSON 2000). Therefore mechanisms of the first class can be referred to 

as “fluctuation independent”. Every one of these mechanisms is well understood and has been 

quantified in models (CHESSON 1992). 

1.2 Coexistence mechanisms 

1.2.1 Classical niche partitioning 

In ecology, there are two different definitions for the term “niche” (LEIBOLD 1995): 

1. For Hutchinson (1957, 1978) and Grinnell (1917) the niche is largely defined by the 

environmental requirements of a species (According to Leibold, Hutchinson defined his 

“fundamental niche”, “as a multi-dimensional "hyper-volume" describing the conditions 

where an organism's expected absolute fitness is at least zero, in a conceptual space whose 

axes include all of the environmental variables affecting that species.”). 

2. Elton (1927) and Mac Arthur and Levin (1967) rather argued the impact a species has on its 

environment is defining its niche. 

Leibold (1995) considered aspects of both criteria important and suggested the use of the terms 

“requirement niche”, “impact niche” and “total niche”. 

Coexistence is possible if (at least at low density) intraspecific competition is greater than interspecific 

competition (CHESSON 2000). This can be accomplished, by increasing the difference between the 

species’ niches. If a species evolves differences due to natural selection, its’ niche is changing. This 

process is called niche partitioning. Even if species have an overlap in one of the three general 

resource dimensions (food type, habitat, time) coexistence is possible because this similarity may not 

be given in a second resource dimension (e.g. Food type and time: Species feeding from the same 

insects at different times), even if the two dimensions are the same (e.g. Habitat and habitat: vertical 

habitat may differ with similar horizontal habitat). This mechanism is termed resource Partitioning 

(SCHOENER 1974). 
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1.2.2 Storage effect 

Simply put, in a variable environment species are able to “store” benefits from time when conditions 

are in their favor, to endure times of unfavorable conditions due to the storage effect. The effect is a 

combination of three components. Fundamental is the assumption, that different species that 

experience the same environmental changes respond differently to these changes (“differential 

responses to the environment” (CHESSON 2000)). That alone would not lead to coexistence because 

the environment does not depend on population densities. But it does have an effect on the 

competition between species. In fact, good environment leads to high competition, while bad 

environment leads to low competition. This connection is termed “covariance between environment 

and competition” (CHESSON 2000). As species respond different to their environment it is possible that 

the status quo is favorable for species A and unfavorable for species B. In this case species A is 

experiencing mostly intraspecific competition and species B mostly interspecific competition. To 

prevent species B from extinction the third component, “buffered population growth” (CHESSON 

2000), is necessary. Lots of species have Life-history-stages that have a buffering effect (e.g. seed 

banks, resting eggs, long lived adults). Due to these stages they are able to maintain a high recruitment 

rate despite unfavorable conditions. By doing so, they diminish interspecific competition compared to 

intraspecific competition, which is stabilizing.  Besides Life-history-stages there are other ways to 

buffer population growth (CHESSON 2000).  

 

1.2.3 Relative nonlinearity of competition (RNC) 

The underlying principle for RNC is a nonlinear relationship between feeding rates and resource 

availability of competing species (HOLT 2001). Chesson phrased it as nonlinear relationship between 

recruitment rate and the magnitude of a common limiting factor (CHESSON 2000). A Species that is 

competitive superior (higher per capita recruitment-/feeding- rate) when the impact of a common 

limiting factor is low, may be inferior while it is high. For the competing species the situation is vice 

versa (shown in figure 1). Thus, there are conditions benefiting the first species and conditions 

benefiting the second (HOLT 2001). Here, one can obviously see the fluctuation dependence: In an 

environment without fluctuation the species which benefits from the current situation wins. Due to the 

variability in the environment both species experience times of competitive superiority and times of 

inferiority. Because environmental variability is not density dependent, even a population facing 

extinction is able to become superior and recover from low density. Hence RNC has a stabilizing 

property and promotes coexistence. 
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Figure 1 (ROXBURGH et al. 2004): Illustrates the nonlinear relationship between the strategies two 

competing species have on dealing with a limiting factor (here phrased as competition). For very low 

or very high competition, species 2 shows the higher population growth rate (compared to the 

competing species), while species 1 has higher population growth for intermediate competition.  

1.2.4 Neutrality 

Neutrality is not a coexistence mechanism. In fact Hubbells’ Neutral Theory of Biodiversity (HUBBEL 

2001) rather argues that a lot of species may not be coexisting in the way defined above, but are on “a 

slow random walk to extinction” (SOMMER 2002). All the previous described mechanisms promote 

coexistence mainly due to stabilizing properties. In contrast, the random walks in neutral communities 

occur because of strong equalizing effects. High equality means the species fitness do not differ very 

much and therefore they have similar per capita reproduction-, death- and immigration rates. Only 

demographic and environmental stochasticity leads to fluctuating population densities, resulting in the 

mentioned random walk. However, because it is possible for neutral communities to persist for long 

periods of time without extinction it is a relevant alternative to coexistence in the mathematical sense 

(SOMMER 2002) and therefore needs to be considered here.  

 

1.3 Problem 

Models help us to simulate population dynamics or to get information, whether coexistence is possible 

or not. However, little is known how these mechanisms work together and to which degree each of 

them influences the population dynamics. Chesson introduced a tool to assess coexistence mechanisms 

relying on recruitment fluctuations. For example in an invader-residence scenario, where both species 
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have similar sensitivity to competition, the difference between invader and resident recruitment 

variance is proportional to the standard quantitative measure of the storage effect for an individual 

invader, and the average invader variance compared with average resident variance is proportional to 

the community average storage effect (CHESSON 2003). But still predictions can only be made for 

certain assumptions and not always clearly. To distinguish which mechanism is responsible for 

coexistence with given population dynamics is not possible yet. Most previous work analyzed the 

models in a mechanistic way. Less effort was made to examine them graphically. Therefore, tools for 

analyzing time series are necessary. Once validated, these tools could be used in the field to help 

ecologists gain knowledge about the circumstances under which their objects of study coexist.  

 

1.4 Aim of this study 

In order to gain knowledge about the contribution coexistence mechanisms have on population 

dynamics, it is necessary to identify specific population dynamic patterns for each of them. That is 

why I created time series for the following coexistence mechanisms:  niche partitioning (NP), relative 

nonlinearity of competition (RNC), storage effect (SE) and neutral dynamics. Time series were created 

for combinations of these mechanisms as well. To provide comparability they were all simulated with 

the same model but altering input parameters. For same reasons, demographic and environmental 

fluctuations have been considered, even for fluctuation independent mechanisms. The resulting time 

series have been analyzed and I suggest two different approaches to identify the underlying 

mechanism(s).  

 

2 Methods 

2.1 Model description 

In order to create time series of population dynamics I created a 2-species population model with 

which it was possible to switch on and off the desired mechanism by setting the right parameters. The 

foundation was the Maynard Smith and Slatkin model (MSS) which models reproduction ratios for the 

case of relative nonlinearity of competition: 

                                                    𝑓(𝑁) =
𝑟

1+(𝑟−1)∗(
𝑁

𝐾
)𝑏

   (1)   

Where N is the population size and f represents the ratio of N(t+1) and N(t). The intrinsic growth rate 

is given by r. K is the carrying capacity. The parameter b reflects the density compensation strategy 
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(HARTIG et al. 2014). High b-values lead a species to overcompensate and hence experience strong 

fluctuations. If the other species has a different density compensation strategy (small b value) 

coexistence is possible because the compensator is able to grow while the over compensator has a 

setback. The mechanism of niche partitioning is easily modeled via the Lotka-Volterra equations. If 

species occupy different niches, they reduce the competitive impact they have on each other. In the 

Lotka-Volterra equation this effect is represented by a factor α. I added a term of Lotka-Volterra 

Competition to the population-capacity ratio, which was done before by Münkemüller et al. (2009). 

Resulting in the following formulas for species one and two:                                                                                    

                  𝑓1(𝑁) =
𝑟1

1+(𝑟1−1)∗(
𝑁1+𝛼12∗𝑁2

𝐾1
)

𝑏1
  (2) 

                  𝑓2(𝑁) =
𝑟2

1+(𝑟2−1)∗(
𝑁2+𝛼21∗𝑁1

𝐾2
)

𝑏2
  (3) 

With α12 being the competitive effect species two has on species one and vice versa for α21. For alpha 

values below one, coexistence is promoted. If α12 and α21 are set to one, both species will experience 

neutral dynamics (CARROLL et al. 2015).  The storage effect needs environmental fluctuation in order 

to function. So I added an additional term (E) to simulate the environmental response for each species.  

                                                       𝑓1(𝑁) =
∗𝑟1

1+(𝑟1−1)∗(
𝑁1+𝛼12∗𝑁2

𝐸1∗𝐾1
)

𝑏1
    (4) 

                                                                         𝑓2(𝑁) =
𝑟2

1+(𝑟2−1)∗(
𝑁2+𝛼21∗𝑁1

𝐸2∗𝐾2
)

𝑏2
    (5) 

In the model the environmental response (E) affects the carrying capacity K. This makes sense 

because in good years one species’ habitat can carry more individuals than in bad years. The values for 

(E) originate from a log-normal distribution. In case the storage effect is effective following term 

ensures both species have different environmental responses: 

                                                                  𝐸1 = lognorm(x)      (6)    

                                                                         𝐸2 = 1/𝐸1               (7) 

 

For all cases where the storage effect is not involved we can simply multiply the reproduction ratio 

with the current population density to get the population density for the next time step. Every time step 

adults die. In the model this is regarded by multiplying the population density for the next time step 

with the difference of 1 and the dying rate (d). 
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                                              𝑁1(𝑡 + 1) = N1(t) ∗ (1 − d) ∗ f1(N)  (8) 

                                                     𝑁2(𝑡 + 1) = N2(t) ∗ (1 − d) ∗ f2(N) (9) 

The storage effect is modeled a little different. One key ingredient for the storage effect is a buffered 

population growth. Here, life history stages enable species to lower the impact competition has on 

them. To represent these life history stages (e.g. a seed bank) I modeled a buffer (B). At first, the 

whole reproduction of one species fills up the buffer by adding it to the current buffer value. If we 

think of B as a seed bank, it makes sense to multiply the input for the buffer by 1000, because the 

production of seeds is much greater than the actual reproduction of individuals.  

                                                    𝐵1(𝑡) = B1(t) + 𝑁(𝑡) ∗ f1(N) ∗ 1000  (10) 

                                                    𝐵2(𝑡) = B2(t) + 𝑁(𝑡) ∗ f2(N) ∗ 1000  (11) 

As said before only a small part of the seeds within the seed bank will germinate. This rate of 

germination also depends on the current environmental conditions. The germinated seeds represent the 

population density of the next time step. 

 

                                                       𝑁1(𝑡 + 1) = 0.00005 ∗ 𝐵1(𝑡) ∗ 𝐸1  (12) 

                                                𝑁2(𝑡 + 1) = 0.00005 ∗ 𝐵2(𝑡) ∗ 𝐸2  (13) 

The germinated seeds are not in the seed bank (B) anymore and need to be subtracted. Some seeds are 

eaten by animals. Others might rot or are destroyed otherwise. That’s why a certain portion of the 

buffer is subtracted each time step. 

 

                                           𝐵1(𝑡 + 1) = 𝐵1(𝑡) −  𝑁1(𝑡 + 1) − 0.2 ∗ 𝐵1(𝑡) (14) 

  𝐵2(𝑡 + 1) = 𝐵2(𝑡) − 𝑁2(𝑡 + 1) − 0.2 ∗ 𝐵2(𝑡) (15) 

To take demographic stochasticity into account the resulting values for N(t+1) are drawn from a 

poisson-distribution.  

To sum up how the model can represent the different mechanisms Table 1 shows the specific 

parameter combinations that are required for the mechanisms and their combinations (buffered 

population growth cannot be influenced by the parameter combination. It is turned on or if via an if-

loop). The interval for possible b1- and b2-values could be metered from the invasibility plot in Hartig 

et al. (2014). Although we are looking at 4 mechanisms there are only 4 possibilities to combine them. 
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That is, because neutrality rather is the absence of any mechanism at all. As soon as it is combined 

with one of the others, neutrality is lost.  

Table 1: Possible parameter combinations for the model 

Mechanism Parameter 

Neutral Dynamics α12= α21 

RNC b1 ∈ {x| 0.4 < x < 1} 

˄ b2 ∈ {x| 3 < x < 8} 

˅ b1 ∈ {x| 3 < x < 8} 

˄ b2 ∈ {x| 0.4 < x < 1} 

Niche Partitioning α12,α21< 1 

Storage Effect sd(E)> 1.2 

buffer on (se=1) 

Combination 

 

Parameter 

Combination1 (RNC and SE) b1 ∈ {x| 0.4 < x < 1} 

˄ b2 ∈ {x| 3 < x < 8} 

˅ b1 ∈ {x| 3 < x < 8} 

˄ b2 ∈ {x| 0.4 < x < 1} 

sd(E)> 1.2 

buffer on (se=1) 

Combination2(RNC and NP) b1 ∈ {x| 0.4 < x < 1} 

˄ b2 ∈ {x| 3 < x < 8} 

˅ b1 ∈ {x| 3 < x < 8} 

˄ b2 ∈ {x| 0.4 < x < 1} 

α12,α21< 1 

Combination3(SE and NP) α12,α21< 1 

sd(E)> 1.2 

buffer on (se=1) 

All b1 ∈ {x| 0.4 < x < 1} 

˄ b2 ∈ {x| 3 < x < 8} 

˅ b1 ∈ {x| 3 < x < 8} 

˄ b2 ∈ {x| 0.4 < x < 1} 

α12,α21< 1 

sd(E)> 1.2 

buffer on (se=1) 

 

2.2 Simulation 

The model described above was used to create time series for the different coexistence mechanisms in 

R Studio. In total, eight time series were created by using mechanism-specific parameter combinations 

for each mechanism and combinations of them (Table 1). Population dynamic plots are given in the 

appendix (A and B). Despite parameters that influence the coexistence mechanism, there are other 

input variables. To maintain comparability for each simulation these parameters were set for a fix 

value, given in Table 2. For the same reason, environmental stochasticity was added to every 

simulation. However it was not possible to run the simulations with the same magnitude of 
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fluctuations (standard deviance (E)). That is, because the storage effect needs strong fluctuations in 

order to function while, for example RNC cannot compensate strong fluctuations, leading to the 

extinction of one species (details in discussion). Thus, every simulation with storage effect involved 

was run with higher sd(E)-Values than the ones without (Table 2). 

  

Table 2: Parameter values for the simulation 

Parameter N1(1), 

N2(1) 

r1,r2 K1,K2 α12 α21 b1 b2 d1,d2 tmax sd(E) 

Value 200 5 500 1 1 1 1 0.05 500 0.15 

Value 

(Mechanism) 

- - - 0.6 

(NP) 

0.9 

(NP) 

5 

(RNC) 

- - - 1.2 

(SE) 

 

 

2.3 Assessment 

Each time series was examined to find characteristic patterns. These patterns were quantified by using 

different assessment tools that I will introduce below. The application of these tools follows a certain 

schema (Figure 2), with which it is possible to determine the effective coexistence mechanism(s) for 

unknown population dynamics. However, I failed in finding an assessment tool that can significantly 

distinguish the Storage effect from Combination 3 (SE and NP). Therefore it was also not possible to 

distinguish the combination with all 3 mechanisms involved. A detailed description of the problem is 

given in the discussion. None of the tools uses absolute values. In fact, ratios are used in order to 

evade trivial solutions for the differentiation.   
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2.3.1 Exclusion approach 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: This flowchart shows the procedure of the Exclusion Approach. The rhombs represent the 5 

assessment tools while the rectangles represent the outcome (i.e. the determined mechanisms). The 

circle stands for the time series which is to be tested. 
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2.3.2 Tools 

1. Fluctuation imbalance (identifying storage effect) 

The population dynamics induced by the storage effect show a tendency towards great fluctuations 

above the mean population density, but not below (Figure 3). As a result of these imbalanced 

fluctuations, the number of population density-values below the mean, are greater than above. To 

quantify this effect I suggest following formula. 

                                                      𝐼 =  
𝑛1𝑏

𝑛1𝑎

∗
𝑛2𝑏

𝑛2𝑎

   (16) 

Where nb is the number of population density values below the mean. Respectively na is the number of 

population density values above the mean. 

 
Figure 3: The population dynamics induced by the storage effect show that most of the population 

density Values are below the mean. In comparison, in the RNC’s dynamics the population density 

fluctuate above and below the mean in an equal manner.  
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2. Fluctuation differences (identifying RNC) 

The most obvious pattern of population dynamics induced by RNC is the difference in magnitude of 

fluctuations between the competing species (Figure 4). While the overcompensating species oscillates 

with large amplitudes, the compensating species experiences moderate fluctuations. In order to 

quantify these fluctuation differences I suggest following formula: 

                                           𝐷 = |
∑ (

|𝑁1(𝑡)−𝑁1(𝑡−1)|

𝑁1(𝑡)
)

𝑡𝑚𝑎𝑥
𝑡=1

𝑡𝑚𝑎𝑥
−

∑ (
|𝑁2(𝑡)−𝑁2(𝑡−1)|

𝑁2(𝑡)
)

𝑡𝑚𝑎𝑥
𝑡=1

𝑡𝑚𝑎𝑥
| (17) 

With tmax being the total number of time steps. 

 
Figure 4: Species one’s fluctuation amplitude is much greater than those of species two. The plot 

ΔN~Time illustrates this phenomenon.  
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3. Correlation between species one and two (distinguishing neutrality from niche 

partitioning) 

Neutral population dynamics exhibit different correlations between population densities of the 

competing species than the ones induced by niche partitioning (Figure 5). That’s why Pearson’s 

correlation coefficient r can be used to tell them apart. 

 

Figure 5: The population densities of species one and two are plotted against each other. It is visible 

that for neutral dynamics the correlation is higher (pearsons’ r = -0.65) than for niche partitioning        

(r = -0.14) 
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4. Mean analysis (identifying Combination 1) 

If we compare the population dynamics of Combination 1 to the storage effect it is easy to detect the 

influence RNC has on the dynamics (Figure 6). While in the storage effects’ time series both species 

experience similar fluctuations there is a difference between them in Combination1. Here, one species 

(the one with the higher b-value), is able to grow much faster than the other, after its population 

crashed. This leads to one species having a higher value of mean population density compared to the 

competing species. Thus, I suggest following formula: 

                                                  𝑀 = |1 −
𝑚𝑒𝑎𝑛(𝑁1)

𝑚𝑒𝑎𝑛(𝑁2)
|  (18) 

 

 

 

Figure 6: In Combination 1 the influence of RNC is visible because Species 1 (the overcompensator) 

fluctuates much more. As result, the mean of the overcompensator is always higher. In case of the 

storage effect the means are more or less the same. 
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5. Oscillation Frequency (identifying Combination 2) 

Both RNC and Combination 2 create heavy fluctuations for one of the species (overcompensator). But 

in most of the time series created by Combination 2 strong to moderate fluctuations occur more often 

than in the ones created by RNC (Figure 7). To quantify this fluctuation frequency, it is possible to 

create a ratio between the times when the absolute fluctuations of the overcompensating species are 

below half of the mean population density, and the total number of time steps. 

                                          𝐹 =
|{|∆𝑁𝑜|<

𝑚𝑒𝑎𝑛(𝑁𝑜)

2
}|

𝑡𝑚𝑎𝑥
  (19) 

Where No is the population density of the overcompensating species and tmax the total number of time 

steps. 

 

 

Figure 7: This plot shows the higher frequency of heavy fluctuations in the case of Combination 2, 

compared to RNC.   
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2.3.3 Classifier  

Alternatively to the exclusion schema a binomial classifier (function train in R Studio) to distinguish 

the time series was used. When provided with a data set for training, this function is able to determine 

characteristic patterns in unknown data and assign classes according to the training data set. For 

identifying the four mechanisms for fixed parameters, the training data set was a matrix consisting of 

three predictors and one class. The model was run one hundred times for each mechanism. Each time, 

the first three assessment tools were calculated and stored in the matrix as predictors. Accordingly, the 

simulated mechanism was stored in the class column. Figure 8 shows the predictors’ values in the 

matrix. For the classification, the model “Conditional Inference Random Forest” was chosen. For 

unknown population dynamics it is now possible to identify the mechanism by executing the fit on the 

unknown data. This is done by predicting the class (function predict), with the values for the three 

assessment tools for the unknown population dynamic as predictors, and the trained fit from before.   

 

Figure 8: A matplot of the matrix used as training data set. Each mechanism has been simulated one 

hundred times. The values of the calculated predictors are shown here. The column containing the 

class was left out because of triviality. Each mechanism has been simulated one hundred times. This 

plot shows the characteristic patterns the mechanisms produce for the assessment tools. For example 

the fluctuation imbalance has much greater values in case of storage effect than for the others. This 

makes sense and is important, because it was designed to distinguish the storage effect from the rest. 

The same is true for fluctuation difference and RNC as well as pearsons’ r and neutral dynamics. 
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3. Results 

3.1 Confirmation of stabilization 

In order to evaluate the stabilizing properties of a mechanism or combination I calculated the time to 

extinction (TTE). To do so, the model was run one hundred times for 10 000 time steps, for each 

mechanism and combination with fixed parameters (Table 2). In each simulation the time steps until 

one species’ population density equals zero were stored in a vector. In the case of storage effect it 

sometimes occurs that one species’ population density is zero but it is not extinct because its buffer is 

still filled. That’s why in these cases an additional condition for extinction was that the buffer is below 

1. The mean of the stored values are given with “TTE” in Table 3. It shows, that besides neutral 

dynamics every mechanism and combination provides coexistence for more or less long time spans, 

which indicates stabilization. Examples of these simulations are shown in Figure 9.  

Table 3: Time to extinction 

Mechanism Neutral RNC Niche Storage Comb1 Comb2 Comb3 All 

TTE 588 7350.8 8769.61 8014.63 8636.23 8405.19 5686.83 7104.92 

TTE shows the mean time steps until one species gets extinct from 100 simulations, 10000 time steps 

and fixed parameters 

 

Figure 9: Exemplarily shows the time until one species gets extinct for the cases neutral dynamics 

(TTE = 405), and RNC (TTE = 6715) 
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3.2 Classification via exclusion approach 

After having validated the functioning of the coexistence mechanisms and their combinations, I turn to 

the question of whether they can be differentiated from the created times series of two species.  

As first approach I suggest to follow the exclusion schema using the first three assessment tools for the 

differentiation of the four mechanisms (Neutral, RNC, NP, SE). However, the tools need to be 

validated first in order to create reliable results. 

For the validation, the formulas above were used to calculate values for the assessment tools 

Fluctuation Imbalance, Fluctuation Difference, and Correlation between Species one and two, for 

each mechanism, for one thousand times. The parameters were set according to Table 2. After 

examining the calculated values, it was possible to estimate threshold-values. In order to validate the 

estimates, two Exact Binomial Tests were applied on each threshold value. For the first test the 

number of simulations where the mechanism which should be identified was above the threshold value 

counted as success. For the second test the number of simulations where the remaining mechanisms 

where below the threshold value counted as success. As table 4 shows, for most parts the estimated 

values are highly significant.  

Table 4: Validating the threshold values for the identification of coexistence mechanisms 
 

Assessment 

Tool 

Mechanism Threshold 

Value 

Success 

If 

Probability of 

Success 

Confidence 

Interval (95%) 

Fluctuation 

Imbalance(I) 

Storage Effect 4.5 I > 4.5 1.000 [0.996; 

           1.000] 

Fluctuation 

Imbalance (I) 

RNC, NP 

Neutral 

4.5 I<4.5 0.997          [0.994; 

0.999] 

Fluctuation 

Difference (D) 

RNC 1 D>1 1.000 [0.996; 

           1.000] 

Fluctuation 

Difference (D) 

SE, NP  

Neutral 

1 D<1 1.000 [0.996; 

           1.000] 

Correlation(r) Neutral 0.5 |r| > 0.5 0.933 [0.916; 

 0.948] 

Correlation(r) RNC,SE,NP 0.5 |r| <0.5 0.995 [0.992; 

 0.997] 

 

In order to test the exclusion approach, one thousand simulations were run with the simulated 

mechanism being chosen at random. For every simulation the used mechanism was stored for later 

comparison. Then the approach was applied, following the exclusion schema (Figure 2), and using the 

validated threshold values. The result was compared to the stored “true” mechanisms. An exact 

binomial test calculated a probability of success of 0.985 (Confidence Interval (95%): [0.975; 0.992]). 

This means for fixed parameters it is possible to significantly distinguish the four mechanisms. 
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Validating assessment tools (Mechanisms and Combinations) 

Following the schema it is possible to distinguish Combination 1 and the storage effect by using the 

Mean analysis. Accordingly Combination 2 and RNC can be distinguished with the Oscillation 

Frequency Analysis. Therefore, threshold values for these assessment tools were estimated and 

validated like above. Table 5 shows the result of that validation.   

 

Table 5: Validating the threshold values for the identification of combinations 

 

Assessment 

Tool 

Mechanism Threshold 

Value 

Success 

If 

Probability of 

Success 

Confidence 

Interval (95%) 
Mean 

Analysis (M) 

Combination1 0.90 M>0.9 1.000 [0.996; 

 1.000] 

Mean 

Analysis (M) 

Storage Effect 0.90 M<0.9 0.974 [0.962; 

 0.983] 

Oscillation 

Frequency (F) 

Combination 2 0.03 F<0.03 0.990 

 

[0.982; 

 0.995] 

Oscillation 

Frequency (F) 

RNC 0.03 F>0.03 0.988 [0.979; 

 0.994] 

 

The simulations were tested the same way as above. As result the differentiation of the four 

mechanisms and two of their combinations are a little less significant than the one without the 

combinations (probability of success: 0.94; Confidence Interval (95%): [0.923; 0.954]). Here the 

differentiation between storage effect and Combination 2 is the least powerful test and for most part 

responsible for the worse result (probability storage effect was misjudged for Combination 1 was 0.12 

and vice versa 0.15).  

3.2.1 Alternating parameters 

So far the model was run with fixed parameters which made the examination much easier. However, 

for application it is necessary that the assessment tools are robust enough to work with alternating 

parameters. For the alternation, the values for the carrying capacity were drawn from a sequence in the 

interval [500; 10 000] for every simulation. In the case of niche partitioning, Alpha12 and Alpha21 were 

each drawn from sequences with the intervals [0.1, 0.9]. In the case of RNC, b1 was drawn from either 

a sequence with the interval [0.4, 1.0] or a sequence with the interval [3, 7]. Respectively, b2 was 

drawn from the sequence that was not chosen for b1 so that the two species differ in their way of 

resource use. With increasing carrying capacity the correlation between the competing species’ 

population density changes, in case of neutral dynamics and niche partitioning. That is why it is not 

sufficient to determine one absolute value as threshold. Thus, I suggest a graphical approach for 

estimating the threshold value in dependency to the carrying capacity. To do so I plotted the 

correlation of the competing species for neutral dynamics and niche partitioning for the complete 

carrying capacity interval [500,10000] in steps of one (Figure 10). Then I added two lines which 
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separate most of the correlation values generated by neutral dynamics from the ones generated by 

niche partitioning. Via the loess function I predicted values for a smoothed curve. A root function was 

fitted to the predicted values, using the nls-function. With this fit it is possible to estimate a threshold 

value (rcrit) in dependency of K. For the analysis the K - value can be estimated by adding up the mean 

population densities of the competing species. Leading to following formula for rcrit:    

 

              𝑟𝑐𝑟𝑖𝑡 =
(𝑚𝑒𝑎𝑛(𝑁)+𝑚𝑒𝑎𝑛(𝑁))

1
5.2877125

3.0500907
− 0.9590107  (20) 

As described above the probability of success for the identification of the mechanisms and 

combinations was calculated via an exact binomial test. Table 6 shows the results of these 

calculations. 

 

Figure 10: Plot of Pearsons’ r in dependency to the carrying capacity K. A curve was fitted to the plot 

in order to separate the values induced by niche partitioning from the ones induced by neutral 

dynamics. This curve represents the threshold value rcrit. 
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Table 6: Accuracy of the exclusion approach 

 Alternation Probability of 

Success 

Confidence 

Interval (95%) 

Most likely 

Misclassification 

Probability of 

Misclassification 

Fixed Parameters 0.940 [0.923; 0.954] - - 

K 0.847 [0.823; 0.869] Neutral  

Alpha 0.789 [0.762; 0.814] NP  0.588 

B 0.822 [0.797; 0.845] RNC/Combination2 0.39 / 0.421 

K, Alpha 0.669 [0.639; 0.698] NP 0.927 

K, B 0.657 [0.627; 0.687] RNC 0.520 

Alpha, B 0.685 [0.655; 0.714] Combination2 0.569 

K, Alpha, B 0.525 [0.494; 0.556] NP 0.944 

The accuracy of the identification is given by the probability of success for different parameter 

alternations. The mechanism which was responsible for the most loss of probability of success is given 

with “Most likely Misclassification”. The “Probability of Misclassification” gives the value of an 

exact binomial test with the number of times the mechanism with the highest likeliness for 

misclassification was not identified and the total number of this mechanism being simulated. 

For the cases in which alpha and the carrying capacity were alternated, niche partitioning was scarcely 

identified. In most of these cases is was misclassified for neutral dynamics. This means the 

approximation with the root function is not sufficient to keep the correlation values apart. 

3.4 Classification via classifier 

Mechanisms 

The fit created by the binomial classifier was tested to validate its accuracy. To do so I created a 

matrix of values produced by the three predictors for randomly set mechanisms. For each simulation 

the mechanism that created these values was written in the matrix as well for later comparison. One 

thousand simulations were conducted and the classes predicted using the trained fit from before. An 

exact binomial test yielded a probability of success of 0.967 (Confidence Interval (95%): [0.954, 

0.977]). As conclusion it can be said, that a binomial classifier is able to significantly distinguish the 

four mechanisms  

Mechanisms and Combinations  

The accuracy of the binomial classifier (this time with 6 predictors) was validated the same way as 

above. The exact binomial test yielded a probability of success of 0.949 (Confidence Interval (95%): 

[0.933,0.962]).
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Alternating Parameters 

As described above, it is necessary for application that the model gives good results with 

alternating parameters. Table 7 shows how the alternation of parameters influences the 

accuracy of the identification. If one parameter is alternated it is randomly drawn from its 

specific interval, as described for the exclusion approach with alternating parameters.  

Table 7: Accuracy of the binomial classifier  

Alternation Probability of Success Confidence Interval (95%) 

Fixed Parameters 0.949 [0.933; 0.962] 

K 0.970 [0.957; 0.980] 

Alpha 0.936 [0.919; 0.95ß] 

B 0.798 [0.772; 0.822] 

K, Alpha 0.922 [0.904; 0.938] 

K, B 0.825 [0.800; 0.848] 

Alpha, B 0.850 [0.826; 0.872] 

K, Alpha, B 0.842 [0.812; 0.864] 

The model with alternating K-,Alpha- and B- Values was tested a second time with an increased train 

data set to figure out if it can increase the probability of success. This time, for each mechanism one 

thousand instead of one hundred simulations provided values for the predictors. The exact binomial 

test yielded a probability of 0.922 (Confidence Interval (95%): [0.904, 0.938]).    

4. Discussion 

4.1 Main questions at this study  

Is it possible to find characteristic patterns in the time series of population dynamics of different 

coexistence mechanisms? Is it possible to quantify these patterns in order to distinguish the 

mechanisms? Is the same true for combinations of these mechanisms? Is the applicability of these 

results given?  

4.2 Answers provided by this study 

Each mechanism has a characteristic pattern and it is possible to quantify them. It is also possible to 

use these patterns for a differentiation between the mechanisms. Not all combinations could be 

distinguished. For this reason and because the significance of the identification was too low for 

alternating parameters the applicability is very limited.  
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4.3 Limitations 

Models help us understanding complex processes and allow predictions under certain assumptions. 

However, because of these assumptions one can never rely one hundred percent on the results given 

by these models. The same is true here. This study provided a simplified image of processes that 

happen on a time scale too large for one human life to record. That is why we cannot prove it right or 

wrong. Instead we need to have a critical look on the presented methods and its flaws.  

4.3.1 Parameters that were not alternated 

The test for accuracy of the identification was not conducted with an alternation of the parameters 

N(1), d, and r. 

The start value for the population density (N(1)) was left out because it is rather trivial to test the 

behavior of the system with it being alternated. That is because the matter of interest in this study is 

the long term dynamic of the different mechanisms and not the starting conditions.  

The coexistence of the two competing species is very sensible to changes in the values of the 

parameters d and r. Before calculating the accuracy of the identification, it would have been necessary 

to check within which interval these parameters can be alternated, so that coexistence is still given for 

each mechanism and combination. This estimation would have exceeded the time limit of this study.  

 

4.3.2 Sensitivity of RNC towards environmental fluctuations 

As mentioned before, it was not possible to create times series for RNC with a standard deviance for 

the lognormal distribution greater than 0.2, because then coexistence was not given. Relative 

nonlinearity of competition shows fluctuations with large amplitudes for one species. By increasing 

the standard deviance the magnitude of environmental impact is increased, leading to an increase in 

amplitude (not only in RNC but for every mechanism). At some point the amplitude is so strong that 

the population density equals zero, from which it cannot recover. An increased carrying capacity can 

postpone that effect but it is still there (Figure 11). In the model used for this study the environment 

influenced the carrying capacity. Alternatively I briefly examined a similar model in which the 

environment influenced the intrinsic growth rate r. For this model RNC showed coexistence features 

for sd – Values up until 0.7. I guess that is because the increase in amplitude for same sd values is 

smaller in the r-model than in the k-model. That means similar to the increase of the carrying capacity 

the effect is not eliminated but postponed. As an ecological explanation one might argue that RNC 

only occurs for small environmental fluctuations because the fluctuation of the overcompensator is 
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rather induced by the dynamics of the species themselves, than exterior factors. In contrast the storage 

effects’ fluctuations are induced by the environment. There are no dynamics between the competing 

species that would make them fluctuate. That is why the storage effect requires stronger environmental 

fluctuations. When they are combined (Combination 1) coexistence is given because even when one 

species’ population density is zero, there is still the buffered population growth to keep the 

reproduction up. 

 
Figure 11: This plot shows the minima and maxima values of population densities for the 

overcompensating species in the case of RNC, in dependency of the standard deviance value of the 

lognormal distribution from which the environmental fluctuations are drawn. The minima values are 

multiplied by ten, so that a tendency is visible on such a large scale. The conclusion of this plot is that 

with larger carrying capacity (black lines) RNC is able to withstand larger environmental fluctuations 

without one species going extinct (the dashed black line reaches zero later than the dashed red line). 
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4.3.3 Distinguishing storage effect and combination 3 

As mentioned before, it was not possible to find a tool to differentiate between the storage effect and 

combination 3. When looking at the population dynamics (Figure 12) it is hard to make out a 

characteristic pattern.  That means the storage effect is the dominant effect here. Because there was no 

pattern to find, it was not possible to come up with an assessment tool. In the exclusion approach, 

niche partitioning is identified by calculating the correlation between the competing species. But it is 

obvious that this relationship is not given anymore because the dynamics are completely different. 

Without an assessment tool to use as predictor it is very unlikely the binomial classifier is able to tell 

them apart because the values of the other predictors are too similar (Figure 12). As result of this 

inability of telling the storage effect and its’ combination with niche partitioning apart, the case where 

all mechanisms are involved is not distinguishable as well.  

 
Figure 12: This figure should illustrate the similarity of population dynamics produced by the storage 

effect and Combination 3. Neither in the patterns of the time series (left), nor in the predictors’ 

values for the binomial classifier (right) a significant difference can be found.
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5. Conclusion 

As main conclusion of this study it can be said, that it is possible to distinguish coexistence 

mechanisms by analyzing their times series data, at least to a certain degree. The differentiation of the 

four mechanisms with fix parameters was significant with both approaches. The identifying of the two 

combinations that were possible to distinguish yielded good results as well. Still, the failure in 

identifying Combination 3 leaves the matter unsatisfying unsolved. It would have been a major benefit 

to be able to identify all the combinations, because presumably combinations of the mechanisms are 

closer to what happens in nature than single mechanisms. Even though the prediction for fixed 

parameters is significant, models with fixed parameters are a poor image of nature in reality. Here 

everything is variable on every possible scale. But as soon as variability is involved, the significance 

of the prediction goes down (Table 6 and 7). Even so, the results produced by the binomial classifier 

are better than the ones produced with the exclusion approach. It is interesting that the probability of 

success for the binomial classifier went remarkably up if the fit was trained with an increased data set. 

Maybe here is some potential to create a mass of data and apply the trained fit for some field data.          
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Appendix 

A 

 
Figure A: Population dynamics for the given Coexistence Mechanisms 
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B 

 
Figure B: Population Dynamics for the given Combinations 
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R-Code 

 

Mainard Smith and Slatkin with lotka volterra and Storage Effect population function 

 

This function works as the model described above. It calculates population densities in a time descrete 

manner. The output consits of the population density, the growth ratio, the difference in population 

density from one time step to another, the r capita growth rate, and the buffer, for both species. In 

addition the environment is given as well. 

msslvsepopfun <- function(parmat, start, time ){ 
   
  #Setting required Vectors and Parameters 
  N1<- numeric(time) 
  N2 <- numeric(time) 
  N1[1] <- start[1] 
  N2[1] <- start[2] 
   
  fn1 <- numeric(time) 
  fn2 <- numeric(time) 
   
  dn1 <- numeric(time) 
  dn2 <- numeric(time) 
   
  r.capita1 <- numeric(time) 
  r.capita2 <- numeric(time) 
   
  buffer1 <- numeric(time) 
  buffer2 <-numeric(time) 
  buffer1[1] <- 250000 
  buffer2[1] <- 250000 
   
   
   
  #Getting Parameter Values from the Parametermatrix    
  r1=parmat[1,1] 
  d1=parmat[2,1] 
  alpha12 = parmat[3,1] 
  k1=parmat[4,1] 
  b1=parmat[5,1] 
  r2=parmat[1,2] 
  d2=parmat[2,2] 
  alpha21= parmat[3,2] 
  k2=parmat[4,2] 
  b2=parmat[5,2] 
   
  #Drawing environmental stochasticity 
  env <- rlnorm(time,meanlog =0, sdlog =parmat[6,1])  
   
  

 #Running the for loop for discrete population growth 
   
  for (i in c(1:(time-1))){ 
     
#If the storage Effect is turned on the environmental responses of the competing species ar
e opposing ("different environmental response") 
    if(parmat[7,1]==1){env1 <- env[i] 
                   env2 <- 1/env[i]} 
              else{env1 <- env[i] 
                   env2 <- env[i]} 
     
    a1 <- (r1)  / (1 + (r1 -1) * ((N1[i] +  alpha12*N2[i])/k1*env1)^b1)  
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    a2 <- (r2)  / (1 + (r2 -1) * ((N2[i]  + alpha21*N1[i])/k2*env2)^b2)  
     
#Just in case the reproduction ratio gets negative it is set to zero here. This makes sense 
because later it is multiplied with N(t) and negative populations do not make sense. In thi
s case the population is extinct. Also it would create NA's when drawing from the poisson d
istribution. 
    a1[a1<0]<-0 
    a2[a2<0]<-0 
#If the storage Effect is turned on, buffered population growth is modeled here. If not, a1 
and a2 are the reproduction ratios and can just be multiplied with N(t) 
    if(parmat[7,1]==1) 
    { 
     
       
     
       
#Filling the buffer (for example producing seeds for a seed bank). The reproduction ratio i
s multiplied by thousand because way more seeds are produced than the actual reproduction r
ate  
      buffer1[i] <- buffer1[i] + a1*N1[i]*1000 
      buffer2[i] <- buffer2[i] + a2*N2[i]*1000 
             
#Only a small fraction of the seeds in the seed bank will germinate. Additionally the germi
nation rate is environment dependent. 
      N1[i+1] <-  0.00005*env1* buffer1[i] 
      N2[i+1] <-  0.00005*env2* buffer2[i] 
       
#The germinated seeds as well as the destroyed seeds (factor 0.2) are subtracted from the c
urrent buffer 
      buffer1[i+1] <- buffer1[i] - N1[i+1] 
      buffer1[i+1] <- buffer1[i] - 0.2*buffer1[i] 
       
      buffer2[i+1] <- buffer2[i] - N2[i+1] 
      buffer2[i+1] <- buffer2[i] - 0.2*buffer2[i] 
    } 
    else{ 
#When storage effect is not ivolved the adults who died are subtracted here (in the #storag
e effect this has already been taken into account with the factor for destroyed seeds). 
      N1[i+1] <- N1[i]*(1-d1) *a1 
      N2[i+1] <- N2[i]*(1-d2) *a2 
    } 
#For demographic stochasticity the resulting population density for the next time step is d
rawn from a poisson distribution 
      
       
    N1[i+1] <- rpois(1,N1[i+1]) 
    N2[i+1] <- rpois(1,N2[i+1]) 
     
     
   
#storing the reproduction ratio 
    fn1[i] <- N1[i+1]/N1[i] 
    fn2[i] <- N2[i+1]/N2[i] 
     
  } 
#Calculating delta N 
  dn1 <- N1-c(0,N1[-time])  
  dn2 <- N2-c(0,N2[-time]) 
  dn1[1] <- NA 
  dn2[1] <- NA 
   
#Calculating the per capita growth rate 
  for(k in c(1:time-1)){ 
     
    r.capita1[k] <- dn1[k+1]/N1[k] 
    r.capita2[k] <- dn2[k+1]/N2[k] 
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  } 
  popmat <- cbind(N1,N2,fn1,fn2,dn1,dn2,r.capita1,r.capita2,buffer1,buffer2,env) 
   
  return(popmat) 
} 

 

The parameters for each mechanism are stored in a parameter matrix which the function can use 

(parmat). These are the parmats for the different simulations : 

parmatneutral <- matrix(ncol = 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatneutral[,1] <- c(5,0.05,1,500,1,0.15,0) 
parmatneutral[,2] <- c(5,0.05,1,500,1,0.15,0) 
 
parmatrnc <- matrix(ncol = 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatrnc[,1] <- c(5,0.05,1,500,5,0.15,0) 
parmatrnc[,2] <- c(5,0.05,1,500,1,0.15,0) 
 
parmatlv <- matrix(ncol = 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatlv[,1] <- c(5,0.05,0.6,500,1,0.15,0) 
parmatlv[,2] <- c(5,0.05,0.9,500,1,0.15,0) 
 
parmatse <- matrix(ncol = 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatse[,1] <- c(5,0.05,1,500,1,1.2,1) 
parmatse[,2] <- c(5,0.05,1,500,1,1.2,1) 
 
parmatcomb1 <- matrix(ncol= 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatcomb1[,1] <- c(5,0.05,1,500,5,1.2,1) 
parmatcomb1[,2] <- c(5,0.05,1,500,1,1.2,1) 
 
parmatcomb2 <- matrix(ncol= 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatcomb2[,1] <- c(5,0.05,0.6,500,5,0.15,0) 
parmatcomb2[,2] <- c(5,0.05,0.9,500,1,0.15,0) 
 
parmatcomb3 <- matrix(ncol= 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatcomb3[,1] <- c(5,0.05,0.9,500,1,1.2,1) 
parmatcomb3[,2] <- c(5,0.05,0.6,500,1,1.2,1) 
 
parmatall <- matrix(ncol= 2, nrow = 7) 
#Parametersequence: r,d,alpha,k,b,env,se 
parmatall[,1] <- c(5,0.05,0.6,500,5,1.2,1) 
parmatall[,2] <- c(5,0.05,0.9,500,1,1.2,1) 

 

For the exclusion approach it is crucial to estimate threshold values for the assesment tools. This is 

done by running the model and calculating the assesment tool value for each mechanism 1000 times. 

For reasons described above Combination 3 and "All" are left out. 

1. Imbalance (I) 

In <- numeric(1000)  
Ir <- numeric(1000) 
Il <- numeric(1000) 
Is <- numeric(1000) 
Ic1 <-numeric(1000) 
Ic2 <-numeric(1000) 
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for(i in 1:1000){ 
#Neutral 
  pop <- msslvsepopfun(parmat=parmatneutral,start=c(200,200), time = 500) 
  In[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*lengt
h(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2])))   
#RNC 
  pop <- msslvsepopfun(parmat=parmatrnc,start=c(200,200), time = 500) 
  Ir[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*lengt
h(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2])))   
#Niche 
  pop <- msslvsepopfun(parmat=parmatlv,start=c(200,200), time = 500) 
  Il[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*lengt
h(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2]))) 
#Storage Effect 
  pop <- msslvsepopfun(parmat=parmatse,start=c(200,200), time = 500) 
  Is[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*lengt
h(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2])))   
#Combination 1 
  pop <- msslvsepopfun(parmat=parmatcomb1,start=c(200,200), time = 500) 
  Ic1[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*leng
th(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2])))   
#Combination 2 
  pop <- msslvsepopfun(parmat=parmatcomb2,start=c(200,200), time = 500) 
  Ic2[i] <-  length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1])))*leng
th(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2])))   
  } 

2. Fluctuation Difference (D) 

Dn <- numeric(1000) 
Dr <- numeric(1000) 
Dl <- numeric(1000) 
Ds <- numeric(1000) 
Dc1<- numeric(1000) 
Dc2<- numeric(1000) 
 
for(i in c(1:1000)){ 
  #Neutral 
  pop <- msslvsepopfun(parmat=parmatneutral,start=c(200,200), time = 500) 
  pop[pop[,1]==0]<-NA 
  pop[pop[,2]==0]<-NA 
  Dn[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
  #RNC 
  pop <- msslvsepopfun(parmat=parmatrnc,start=c(200,200), time = 500) 
  pop[pop[,1]==0]<-NA 
  pop[pop[,2]==0]<-NA 
  Dr[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
  #Niche Partitioning 
  pop <- msslvsepopfun(parmat=parmatlv,start=c(200,200), time = 500) 
  pop[pop[,1]==0]<-NA 
  pop[pop[,2]==0]<-NA 
  Dl[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
  #Storage Effect 
  pop <- msslvsepopfun(parmat=parmatse,start=c(200,200), time = 500 ) 
  pop[pop[,1]==0]<-NA 
  pop[pop[,2]==0]<-NA 
  Ds[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
  #Combination 1 
  pop <- msslvsepopfun(parmat=parmatcomb1, start=c(200,200), time = 500 ) 
  pop[pop[,1]==0]<-NA 
  pop[pop[,2]==0]<-NA 
  Dc1[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
  #Combination 2 
  pop  <- msslvsepopfun(parmat=parmatcomb2, start=c(200,200), time = 500) 
  pop[pop[,1]==0]<-NA 
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  pop[pop[,2]==0]<-NA 
  Dc2[i] <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
 
} 

3. Correlation 

 The correlation only needs to be estimated for Neutral dynamics and Niche Partitioning (lv) 
(see exclusion Schema). 

rn <- numeric(1000) 
rl <- numeric(1000) 
 
 
for(i in c(1:1000)){ 
   
   
  neutral <- msslvsepopfun(parmat=parmatneutral,start=c(200,200), time = 500) 
  lv <- msslvsepopfun(parmat=parmatlv,start=c(200,200), time = 500) 
   
  rn[i] <- abs(cor(neutral[,1],neutral[,2])) 
  rl[i] <- abs(cor(lv[,1],lv[,2])) 
   
} 

4. Mean Analysis 

 The mean analysis only needs to be done for the cases Storage Effect and Combination 1 
(see exclusion schema) 

Ms <- numeric(1000) 
Mc1 <- numeric(1000)  
 
for(i in c(1:1000)){ 
   
   
  se <- msslvsepopfun(parmat=parmatse,start=c(200,200), time = 500) 
  comb1 <- msslvsepopfun(parmat=parmatcomb1, start=c(200,200), time = 500) 
   
  Ms[i] <- abs(1- mean(se[,1])/mean(se[,2])) 
  Mc1[i] <- abs(1- mean(comb1[,1])/mean(comb1[,2])) 
 
} 

5. Oscillation Frequency 

 Oscillation Frequencys only needs to be calculated for RNC and Combination 2 (see 
exclusion schema). But because it is not known which one the overcompensator is, it is best 
to calculate F for both species. 

Fr <- matrix (nrow = 1000, ncol=2) 
Fc2 <- matrix(nrow = 1000, ncol=2) 
 
for(i in 1:1000){ 
 
  rnc <- msslvsepopfun(parmat=parmatrnc,start=c(200,200),time = 500) 
  comb2 <- msslvsepopfun(parmat=parmatcomb2, start=c(200,200), time = 500) 
 
   
  Fr[i,1] <-length(which(abs(rnc[,5])<mean(rnc[,1])/2))/length(rnc) 
  Fr[i,2] <-length(which(abs(rnc[,6])<mean(rnc[,2])/2))/length(rnc)   
 
  Fc2[i,1] <-length(which(abs(comb2[,5])<mean(comb2[,1])/2))/length(rnc) 
  Fc2[i,2] <-length(which(abs(comb2[,6])<mean(comb2[,2])/2))/length(rnc)   
 
} 
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Validating Threshold Values for fixed parameters 

 

binom.test(length(which(Is>4.5))+ length(which(Ic1 > 4.5)),2000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Is > 4.5)) + length(which(Ic1 > 4.5)) and 2000 
## number of successes = 1998, number of trials = 2000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9963924 0.9998789 
## sample estimates: 
## probability of success  
##                  0.999 

binom.test(length(which(In<4.5))+ length(which(Ir<4.5))+length(which(Il<4.5))+length(which(
Ic2<4.5)),4000) 

##  
##  Exact binomial test 
##  
## data:  length(which(In < 4.5)) + length(which(Ir < 4.5)) + length(which(Il <  and 4000    
4.5)) + length(which(Ic2 < 4.5)) and 4000 
## number of successes = 3985, number of trials = 4000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9938225 0.9978997 
## sample estimates: 
## probability of success  
##                0.99625 

binom.test(length(which(Dr>1))+length(which(Dc2>1)), 2000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Dr > 1)) + length(which(Dc2 > 1)) and 2000 
## number of successes = 2000, number of trials = 2000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9981573 1.0000000 
## sample estimates: 
## probability of success  
##                      1 

binom.test(length(which(Dn<1))+length(which(Dl<1))+length(which(Ds<1))+length(which(Dc1<1))
, 4000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Dn < 1)) + length(which(Dl < 1)) + length(which(Ds <  and 4000    1)
) + length(which(Dc1 < 1)) and 4000 
## number of successes = 3895, number of trials = 4000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9683110 0.9784811 
## sample estimates: 
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## probability of success  
##                0.97375 

binom.test(length(which(rn>0.5)), 1000) 

##  
##  Exact binomial test 
##  
## data:  length(which(rn > 0.5)) and 1000 
## number of successes = 908, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.8883642 0.9251916 
## sample estimates: 
## probability of success  
##                  0.908 

binom.test(length(which(rl<0.5)), 1000) 

##  
##  Exact binomial test 
##  
## data:  length(which(rl < 0.5)) and 1000 
## number of successes = 999, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9944411 0.9999747 
## sample estimates: 
## probability of success  
##                  0.999 

binom.test(length(which(Mc1>0.9)),1000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Mc1 > 0.9)) and 1000 
## number of successes = 1000, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9963179 1.0000000 
## sample estimates: 
## probability of success  
##                      1 

binom.test(length(which(Ms <0.9)),1000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Ms < 0.9)) and 1000 
## number of successes = 979, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9680777 0.9869548 
## sample estimates: 
## probability of success  
##                  0.979 

binom.test(length(which(Fc2[,1]<0.03)),1000) 

##  
##  Exact binomial test 
##  
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## data:  length(which(Fc2[, 1] < 0.03)) and 1000 
## number of successes = 979, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9680777 0.9869548 
## sample estimates: 
## probability of success  
##                  0.979 

binom.test(length(which(Fr[,1] >0.03)),1000) 

##  
##  Exact binomial test 
##  
## data:  length(which(Fr[, 1] > 0.03)) and 1000 
## number of successes = 1000, number of trials = 1000, p-value < 
## 2.2e-16 
## alternative hypothesis: true probability of success is not equal to 0.5 
## 95 percent confidence interval: 
##  0.9963179 1.0000000 
## sample estimates: 
## probability of success  
##                      1 

 

Exclusion Approach Function 

 In the exclusion function it is randomly decided which mechanism is simulated for every time the 

function is run. With "TIMES" one can set how many times the model should be simulated. With the 

letters K, B, A one can decide which parameter should be variable (e.g. B =T means B is drawn 

randomly) 

exclusion <- function(TIMES,K=F,B=F,Alpha=F){ 
   
#For later comparison the information which mechanism is drawn gets stored in "Truth". In t
he vector Guess the result of the analysation is stored. 
  Truth <- character(TIMES) 
  Guess <- character(TIMES) 
  mechanisms <- c("neutral", "rnc", "lv", "se", "comb1" ,"comb2") 
  storage= character(1) 
   
  for(i in c(1:TIMES)){ 
     
#First the parameter values are drawn from their specific interval if they are to be altern
ated. 
    if(K==T){capacity <-  sample(seq(from=500, to = 10000, by = 100),size = 1)} 
    else{capacity <- 500} 
     
    if(B==T){ 
    b1 <- sample(c(seq(from=0.4, to = 1, by = 0.1),seq(from=3, to = 7, by =0.2)),size = 1) 
    if(b1>2.9){ b2 <- sample(seq(from=0.4, to = 1, by =0.1), size =1)} 
    else{b2 <- sample(seq(from = 3, to =7, by = 0.2),size=1)} 
    }     
    else{b1 <- 5 
         b2 <- 1} 
     
    if(Alpha==T){alpha1 <- sample(seq(from=0.1, to = 0.9, by =0.02),size=1)  
                alpha2 <- sample(seq(from=0.1, to = 0.9, by =0.02),size=1)} 
    else{alpha1 <- 0.6 
         alpha2 <- 0.9} 
     
#Then the values are stored in the parmats 
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    parmatneutral <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatneutral[,1] <- c(5,0.05,1,capacity,1,0.15,0) 
    parmatneutral[,2] <- c(5,0.05,1,capacity,1,0.15,0) 
         
    parmatrnc <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatrnc[,1] <- c(5,0.05,1,capacity,b1,0.15,0) 
    parmatrnc[,2] <- c(5,0.05,1,capacity,b2,0.15,0) 
          
    parmatlv <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatlv[,1] <- c(5,0.05,alpha1,capacity,1,0.15,0) 
    parmatlv[,2] <- c(5,0.05,alpha2,capacity,1,0.15,0) 
     
    parmatse <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatse[,1] <- c(5,0.05,1,capacity,1,1.2,1) 
    parmatse[,2] <- c(5,0.05,1,capacity,1,1.2,1) 
     
    parmatcomb1 <- matrix(ncol= 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatcomb1[,1] <- c(5,0.05,1,capacity,b1,1.2,1) 
    parmatcomb1[,2] <- c(5,0.05,1,capacity,b2,1.2,1) 
     
    parmatcomb2 <- matrix(ncol= 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatcomb2[,1] <- c(5,0.05,alpha1,capacity,b1,0.15,0) 
    parmatcomb2[,2] <- c(5,0.05,alpha2,capacity,b2,0.15,0) 
         
#Here the mechanism for the current simulation is drawn and simulated 
    Truth[i] <- sample(mechanisms,size=1) 
    if(Truth[i] =="neutral"){parmat = parmatneutral} 
    if(Truth[i] == "rnc")   {parmat = parmatrnc} 
    if(Truth[i] == "lv")    {parmat = parmatlv} 
    if(Truth[i] == "se")    {parmat = parmatse} 
    if(Truth[i] == "comb1") {parmat = parmatcomb1} 
    if(Truth[i] == "comb2") {parmat = parmatcomb2} 
             
    pop <-msslvsepopfun(parmat=parmat,start=c(200,200), time = 500) 
     
#The 5 assessment tools are calculated     
    i1 <- length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1]))) 
    i2 <- length(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2]))) 
    I  <- i1*i2   
     
    r <- cor(pop[,1],pop[,2]) 
    k <- mean(pop[,1])+ mean(pop[,2]) 
    rcrit <- k^(1/5.2877125)/3.0500907 - 0.9590107 
         
    f1 <- length(which(abs(pop[,5])<mean(pop[,1])/2))/length(pop)     
    f2 <- length(which(abs(pop[,6])<mean(pop[,2])/2))/length(pop)     
     
    M <- abs(1- mean(pop[,1])/mean(pop[,2])) 
     
#Because in the calculation of the fluctuation difference is a division with the population 
density involved, we need to make sure they are not zero (e.g. if one species goes extinct)
. Otherwise the result would be an infinite value.   
    pop[,1][pop[,1] == 0] <- NA 
    pop[,2][pop[,2] == 0] <- NA 
    D <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
     
#Now the exclusion of the mechanisms begins(Following the schema).First the mechanisms are 
distinguished.  
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if(I>4.5){Guess[i] <- "se"} 
    else{     
      if(D > 1){ Guess[i] <- "rnc"} 
      else{ 
        if(K!=T){if(abs(r) > 0.5){Guess[i] <- "neutral"}else{Guess[i] <- "lv"}} 
        else{if(r < rcrit){Guess[i] <- "neutral"}else{Guess[i] <- "lv"}} 
    } 
    } 
     
     
#After the involving mechanisms are identified it is possible to determine Combinations. 
    if(Guess[i] == "se"){if(M > 0.9){Guess[i] <- "comb1"}} 
    if(Guess[i] == "rnc"){if(f1 < 0.03){Guess[i] <- "comb2"} 
                          if(f2 < 0.03){Guess[i] <- "comb2"}} 
     
  } 
  result<- cbind(Truth,Guess) 
  return(result) 
} 

Validating Exclusion Approach 

x <- exclusion(1000) 
binom.test(length(which(x[,1]==x[,2])),1000) 

 
## 95 percent confidence interval: 
##  0.9597851 0.9813153 
## sample estimates: 
## probability of success  
##                  0.972 

x <- exclusion(1000,K=T) 
binom.test(length(which(x[,1]==x[,2])),1000) 

## 95 percent confidence interval: 
##  0.8052559 0.8527830 
## sample estimates: 
## probability of success  
##                   0.83 

x <-exclusion(1000,K=T,Alpha=T) 
binom.test(length(which(x[,1]==x[,2])),1000) 

## 95 percent confidence interval: 
##  0.8959680 0.9315427 
## sample estimates: 
## probability of success  
##                  0.915 

x<-exclusion(1000,K=T,B=T) 
binom.test(length(which(x[,1]==x[,2])),1000) 

## 95 percent confidence interval: 
##  0.6439670 0.7030045 
## sample estimates: 
## probability of success  
##                  0.674 

x <- exclusion(1000,B=T,Alpha=T) 
binom.test(length(which(x[,1]==x[,2])),1000) 

## 95 percent confidence interval: 
##  0.6756604 0.7331271 
## sample estimates: 
## probability of success  
##                  0.705 
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x<-exclusion(1000,K=T,B=T,Alpha=T) 
binom.test(length(which(x[,1]==x[,2])),1000) 

## 95 percent confidence interval: 
##  0.7582168 0.8100933 
## sample estimates: 
## probability of success  
##                  0.785 

Classifier 

The classifier function is similar to the exclusion function. But instead of the exclusion in the end, this 

function just yields the values of all the assessment tools in a vector (a). Beside the tools' values (the 

predictors), for every simulation the mechanism is stored as a "class" in the vector as well. The 

function “train” is able to determine characteristic patterns in the predictors’ values, in dependency to 

their class. Later this fit can be used on unknown values to assign classes to the characteristic predictor 

patterns. 

classifierfun <- function(mechanism, K=F,Alpha=F,B=F){ 
   
#First the parameter values are drawn from their specific interval if they are to be altern
ated. 
    if(K==T){capacity <-  sample(seq(from=500, to = 10000, by = 100),size = 1)} 
    else{capacity <- 500} 
     
    if(B==T){ 
    b1 <- sample(c(seq(from=0.4, to = 1, by = 0.1),seq(from=3, to = 7, by =0.2)),size = 1) 
    if(b1>2.9){ b2 <- sample(seq(from=0.4, to = 1, by =0.1), size =1)} 
    else{b2 <- sample(seq(from = 3, to =7, by = 0.2),size=1)} 
    }     
    else{b1 <- 5 
         b2 <- 1} 
     
    if(Alpha==T){alpha1 <- sample(seq(from=0.1, to = 0.9, by =0.02),size=1)  
                alpha2 <- sample(seq(from=0.1, to = 0.9, by =0.02),size=1)} 
    else{alpha1 <- 0.6 
         alpha2 <- 0.9} 
     
#Then the values are stored in the parmats 
     
    parmatneutral <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatneutral[,1] <- c(5,0.05,1,capacity,1,0.15,0) 
    parmatneutral[,2] <- c(5,0.05,1,capacity,1,0.15,0) 
         
    parmatrnc <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatrnc[,1] <- c(5,0.05,1,capacity,b1,0.15,0) 
    parmatrnc[,2] <- c(5,0.05,1,capacity,b2,0.15,0) 
          
    parmatlv <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatlv[,1] <- c(5,0.05,alpha1,capacity,1,0.15,0) 
    parmatlv[,2] <- c(5,0.05,alpha2,capacity,1,0.15,0) 
     
    parmatse <- matrix(ncol = 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatse[,1] <- c(5,0.05,1,capacity,1,1.2,1) 
    parmatse[,2] <- c(5,0.05,1,capacity,1,1.2,1) 
     
    parmatcomb1 <- matrix(ncol= 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatcomb1[,1] <- c(5,0.05,1,capacity,b1,1.2,1) 
    parmatcomb1[,2] <- c(5,0.05,1,capacity,b2,1.2,1) 
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    parmatcomb2 <- matrix(ncol= 2, nrow = 7) 
    #Parameterreihenfolge: r,d,alpha,k,b,env,se 
    parmatcomb2[,1] <- c(5,0.05,alpha1,capacity,b1,0.15,0) 
    parmatcomb2[,2] <- c(5,0.05,alpha2,capacity,b2,0.15,0) 
    
   
  if(mechanism =="neutral") {parmat = parmatneutral} 
  if(mechanism == "rnc")    {parmat = parmatrnc} 
  if(mechanism == "lv")     {parmat = parmatlv} 
  if(mechanism == "se")     {parmat = parmatse} 
  if(mechanism == "comb1")  {parmat = parmatcomb1} 
  if(mechanism == "comb2")  {parmat = parmatcomb2} 
   
  #Every mechanism gets its own class   
  if(mechanism =="neutral") {class <- 1} 
  if(mechanism == "rnc")    {class <- 2} 
  if(mechanism == "lv")     {class <- 3} 
  if(mechanism == "se")     {class <- 4} 
  if(mechanism == "comb1")  {class <- 5} 
  if(mechanism == "comb2")  {class <- 6} 
      
  a <- numeric(7) 
  pop <-msslvsepopfun(parmat=parmat,start=c(200,200), time = 500) 
     
#The 5 assessment tools are calculated     
  i1 <- length(which(pop[,1]<mean(pop[,1])))/length(which(pop[,1]>mean(pop[,1]))) 
  i2 <- length(which(pop[,2]<mean(pop[,2])))/length(which(pop[,2]>mean(pop[,2]))) 
  I  <- i1*i2   
     
  r <- cor(pop[,1],pop[,2]) 
           
  f1 <- length(which(abs(pop[,5])<mean(pop[,1])/2))/length(pop)     
  f2 <- length(which(abs(pop[,6])<mean(pop[,2])/2))/length(pop)     
     
  M <- abs(1- mean(pop[,1])/mean(pop[,2])) 
     
#Because in the calculation of the fluctuation difference is a division with the population 
density involved, it is crucial to make sure they are not zero (e.g. if one species goes ex
tinct). Otherwise the result would be an infinite value.   
  pop[,1][pop[,1] == 0] <- NA 
  pop[,2][pop[,2] == 0] <- NA 
  D <- abs(mean(abs(pop[,5])/(pop[,1]),na.rm=T) - mean(abs(pop[,6])/pop[,2],na.rm=T)) 
     
  
       
  a[1] <- r 
  a[2] <- D 
  a[3] <- I 
  a[4] <- f1 
  a[5] <- f2 
  a[6] <- M 
  a[7] <- class 
   
  return(a) 
} 

 

The train function needs a train data set and a class set. With the classifier function we stored both in 

the same vector. But intentionally the class was stored as last. Now we can build up a matrix and use 

the first columns as train data set and the last as class set.But first, the matrix: 

classmatrix <- matrix(ncol=7,nrow=600) 
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for(i in 1:100){ 
  classmatrix[i,] <- classifierfun(mechanism="neutral") 
} 
for(i in 1:100){ 
  classmatrix[100+i,] <- classifierfun(mechanism="rnc") 
} 
for(i in 1:100){ 
  classmatrix[200+i,] <- classifierfun(mechanism="lv") 
} 
for(i in 1:100){ 
  classmatrix[300+i,] <- classifierfun(mechanism="se") 
} 
for(i in 1:100){ 
  classmatrix[400+i,] <- classifierfun(mechanism="comb1") 
} 
for(i in 1:100){ 
  classmatrix[500+i,] <- classifierfun(mechanism="comb2") 
} 

 

The function Train comes with the package “caret”. The function needs to know which columns are the train data and which 

are the predictors. Then the fit can be calculated 

install.packages(“caret”) 

require(“caret”) 

TrainData <- classmatrix[,1:6] 

TrainClasses <- classmatrix[,7] 

 

cforestfit <- train(TrainData, TrainClasses, 

                      method = "cforest") 

 

 

Now the fit can be checked on a random data set: 

mat <- matrix(ncol = 7, nrow=1000) 

for(i in 1:1000){ 

  mat[i,]<- classifierfun(mechanism=sample(c("neutral", "rnc", "lv", "se", "comb1", "comb2"
),size=1))  

} 

result <- round(predict(cforestfit, newdata =mat[,1:6])) 

check <- cbind(result,mat[,8]) 

binom.test(length(which(check[,1]==check[,2])),1000) 
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