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Abstract

Abstract

As not every habitat unit provides the adequatetunixof environmental conditions, animals often
have to face a certain trade-off between severibfa when selecting their habitats. Thereby, the
main drivers, which need to be weighed against etlogr, are mostly food, safety and reduced expo-
sure to unfavourable climate conditions.

To find out how male ibex select their habitat aridch seasonal decisions they make when confront-
ed with the trade-off between the named factoesy tiesource selection behaviour has been observed
in Gran Paradiso National Park (Western Italianshlduring the growing season (May-October) of
the years 2010 and 2011.

The analysis was carried out on two different scéle means of resource selection functions (RSFs).
The large scale was defined by the home rangeo$ittee whole population, which was determined by
the calculation of a minimum convex polygon (MCRO%). The smaller scale was described by the
areas which male ibex could reach within a monthcdnsider that habitat use patterns vary also in
time, both daily and seasonal parameters weredadlin the analysis.

And in fact seasonal dependent selection pattealsl e clearly detected for both scales. Among the
different spatial scales however, only slight diieces could be noticed. Over all, the trade-off be
tween reducing the exposure to unfavourable climatelitions, especially to heat, and maximizing
the energy input by foraging high quality food @dythe key role in the resource selection of male
ibex. Most of the other environmental parameteesygal to only be selected in consequence to the
seasonal dependent weighting of those factors. tibddily it was clearly shown that male ibexes
rather react in expectations of the maximum airmperature values than in consideration of to the ac-
tual conditions, which indicates a certain predittapability in terms of imminent temperature con-
ditions. Regardless of the food quality and thehb@ temperature values male ibex preferred areas
with high forage quantity. The reduction of predatrisk however did not seem to have a huge impact

on the resource selection of those animals.
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1. Introduction

The investigation of the relationship between oigias and their environment is an integral part of
ecology. Therefore, resource selection studiescarded out to enhance the understanding of such
complex phenomena. A preference for a certain resois determinable when it is used dispropor-
tionately to its availability in the environmenifihson 1980). A number of studies already showed
that when selecting a habitat, animals often havdeal with several internal and external factors.
External drivers are mostly environmental condiiolike the climatic situation or the quantity and
quality of available forage. Internal factors, whigotentially influence the resource selection mif a
mals, could i.a. be the migratory behaviour of aimal or its mating spur. In a study of Scandinavia
brown bearsrsus arcto} for instance, the complex relationship betwe#arnal and external fac-
tors was investigated. Thereby it was show that thdividual movement patterns were mainly driv-
en by the internal factor of reproductive statud #rat especially females had to face trade-offs to
guarantee the security of their cups (Martin eR8lL3). In case of African elephantsokodonta Afri-
cang, however, it could be detected that their halsigdection first of all is determined by the extrn
factor of available water sources trading off otte=ources, like forage, in order to stay closaréas

providing a sufficient water supply (de Knegt et2011).

For large herbivores it was shown that in mostefdases the main driver of their resource selec-
tion results from a trade-off between food quadity exposure to potential predators (e.g. Andegson
al. 2005). Thereby, especially for females and goudividuals the reduction of predation risk plays
key role in their selection behaviour, like it wdetected in a study of seasonal range selectibigin
horn sheep (Festa-Bianchet 1988). Also for alphexiCapra ibe} an increased importance of
predator risk reduction was determined for femddet as well for young males (Grignolio et al.
2007a). Further analysis additionally discovereat the vigilance behaviour, at least among ibex, is
not only affected by the sex and the age of an ahibut also depends on the dimension of the group
it is staying in (Brivio et al. 2014). Accordinglgnimals in larger groups are at lower risk of pred
tion, so the reduction of the exposure to potemiabators is of minor importance for their behavio
than for animals in smaller groups.

Besides the distribution of high quality forage dhe predation risk among the available habitatsuni

also the respective exposure to unfavourable ciranditions is a main driver of the resource selec
tion of large herbivores (van Beest et al. 2012 .shown by Parrini et al. (2003), both cool air tem
perature values and wind have a direct impact ommmas, mostly entailing a loss in condition. How-

ever also high air temperature values can causssstor animals, especially for heat-sensitive isgec
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like the alpine ibex (van Beest et al. 2012), whaddeady experiences heat discomfort when tempera-
tures exceed 15-20°C (Aublet et al. 2009).

The habitat choice of an animal thus results fremnaividual weighting of the respective costs and
benefits of a habitat unit. It, however, may vaot only with an animal’s sex and age but also with
the season and the time of the day (Godvik etCil9p

The aim of this study was to disentangle the maide-off between food quality, thermoregulation
and predation risk, which male alpine ibex havéate in their efforts to maximize both their suadiv
and reproductive success. Thereby, also its diffexffects on their selection behaviour shall banex
ined throughout the growing season (May-Octobegamng the time of the year, when plant growth

takes place.

To analyse resource selection behaviour of ibewai decided to use the common method of re-
source selection functions (RSF). According to Maatlal. (2002, S. 14), they are defined atuac-
tion of characteristics measured on resource usitsh that its value for a unit is proportional toet
probability of that unit being USEThby a species. As the shown preference of a cergsource is
thereby dependent on the respective availabilitth@éenvironment (Johnson 1980), both its variation

in time and space were considered by analysinge$murce selection at different levels.

Based on prior studies (i.a. Aublet et al. 20090 Bbal. 2001, Brivio et al. 2014, Grignolio et al.
2007a, Scillitani et al. 2013), the trade-off betwenhigh food quality, which they need to maximize
their energy intake, and the reduced exposuregio &ir temperatures is expected to play a keyirole
the resource selection of male alpine ibex. Theeefb is assumed that in spring they mainly chose
their habitats in regard to high class forage, wasnn summer, when the air temperature values in-
crease, they primarily decide to stay at the coplieces. In this respect, it shall additionallytested,
whether current air temperature values or theilydaaxima are more crucial for the resource selec-
tion behaviour of male ibex, to test the hypothedidublet et al. (2009, S. 245) thairfgulate [...]
behaviour is not simply a function of current [atdmperature, but can be modified by the expecta-
tions of [later on] conditions [..] Based on the fact that ibex are strongly heasiswe animals and
are less affected by cool temperatures, it wasnasdithat, in contrast to most mammals, they show
rather a preference for windy areas instead oftestegl locations to reduce the operative temperature
conditions (Aublet et al. 2009). As this analysidimited to the behaviour research of male individ
als, the reduction of predation risk was not expe¢b be essential for their habitat choice. Howeve
it was supposed that they still show a certaincsigle pattern in regard to this depending on thlwupr
size. Ibex in small groups or solitary individualere assumed to show stronger preference for places
close to refuge areas than animals in big groupseghey are more exposed to possible predators
(Brivio et al. 2014).
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2.1 Material

2.1.1 Study area and population

Study area- The study took place in the Valsavaranche Vallepart of the Gran Paradiso National
Park (GPNP: 45° 35' N, 7° 12’ E) in north-westetaly. The area covers 1700ha and has an altitudi-
nal range of 1700-3300m above sea level (Grignetlial. 2007b). The bottom of the valley is domi-
nated by larchl(arix decidug and Swiss stone pin®ifius cembrawoods and pastures. Above the
tree line, in the more common areas used by illexatea mainly contains rocks, screes, meadows
and grassland. Since 2006 the presence of a wolf {@anis lupu} has been confirmed in the Na-
tional Park (Palmegiani et al. 2013). Their maiayprhowever, was alpine chamois, followed by red
deer (Palmegiani et al. 2013). Alpine ibex wereyadcondary in diet, representing 8% of wolf dmet i
summer and 14% in winter, on average (Palmegiaal.2013). Predation by golden eaglésila
chrysaetokis, according to Grignolio et al. (2007a, S. 1488mited and focused only on young ibex
a few month of ageOther relevant predators like lynkynx lyny have not been recorded in this area
for about a century (Brivio et al. 2015). Huntirgyriot allowed in the National Park (Brivio et al.
2014).

Population— The population in Gran Paradiso National Patkés‘only surviving natural population

of alpine ibeX (Grignolio et al. 2007a, S. 1489) and has bedenisively monitored since 1999 (Briv-
io et al. 2014). Every year, animals were captuaed marked for a long-term study on ethology,
ecology and sanitary conditions of this populat{Bnivio et al. 2014). As described in Brivio et al.
(2015), the captures and markings were executeadtbgm of rangers and the park veterinarian using
a sex-specific dose of xylanzine and ketamine fa@ngcal immobilisation. After the capture, they
collected biometric data and took biological sarmfBrivio et al. 2015). The age of an animal was
identified by counting the annuli on their hornseaplained by Ratti und Habermehl (1977) and final-
ly the ibex were marked with different coloured &ags (Brivio et al. 2014). During the period otala
collection in the years 2010 and 2011, 70 markedt Mvere observed in the study area, 59 of them

males and 11 females.



2. Materials and methods

2.1.2 Data collection

2.1.2.1 Ibex data

Ibex observation data The ibex data used for this research was celleby Francesca Brivio (Uni-
versity of Sassari, Italy) in 2010 and 2011, eaefryduring the growing season from the beginning of
May to the end of October, in total 166 days. Tfareertain transects (see Appendix Map A.1) were
continuously walked twice a day, mostly betweerD&#t and 4-8pm, looking everywhere around for
ibex groups. These were defined as one or moreadsiof the same species within 50 meters of each
other. When sighting a group, the group size wasrdeed and their composition, that is to say their
sex and age classes, were estimated using binsecBlesides this the group’s location was determined
using the observer’s position extracted from a GR$point (Garming CSx60), the sighting direc-
tion’s deviation of the centre of the group frone thorth (hand-held compass) and the sighting dis-
tance, meaning the direct distance between thenafisend the centre of the group, measured with a
Leica 7x42 laser rangefinder. Additionally, the ¢irand the date were noted as well as any marked
individual present in the group. To avoid countthg same group or individual twice, transects were
walked quite fast taking into consideration thaiugs of ibex move slowly and infrequently. Besides
this, the marked individuals were additionally useddentify different groups throughout one walk.
In total 1675 ibex groups were observed duringstidy period, each assigned to a certain group-ID.

For the analysis this group-based data was chamgedn individual based dataset using all the
recorded positions of marked ibexes which were tieéerred as “USED” locations. The loss of 203
data points by means of keeping only the ibex olagiem data of marked individuals was accepted for
more precise information about the sex and agbefhimals. The group size was kept as a possible
predictor in resource selection analyses. And #isogroup-ID was retained to save the information
about which individuals where seen together inséime group.

As there are big differences in ibex behaviour délpeg on the sex (Grignolio et al. 2007a), the
original data, which included both the data of flseaand males, has been split for separate analyses
Due to temporal limitations only the resource sibecof male ibex (i.e., the vast majority of thmeli-

viduals observed during this research) could bestigated in this thesis.

Ibex telemetry data- In order to define AVAILABILITY at the proper ate in resource selection
analysis, information about the movement behavajunale ibex were required. Since the observa-
tion frequency of the marked animals was not conistaer time and varied among the individuals,
the chance of using telemetry data, collected ayfears after this study mainly for activity analyse
was used to get more accurate information aboutritieement ranges of ibex. The dataset contains
location data recorded from 10 male ibex, whicheagaptured and fitted with GPS collars (GPS PRO
Light collar, Vectronic Aerospace GmbH). Moreovéey were equipped with an activity sensor

measuring the activity in two axes based on theaheicceleration experienced by the collar (Brato
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al. 2015). The male ibex were all captured betviberi?” of May and the 280of June in 2013 by tele-
narcosis. The first 7 days after the capture, tilarcwas set to record the position every two kour
After that it was changed into one record everyidrk for the rest of the year. Due to technicabpro
lems, only for two males (collar ID 12228 and 12B38%ere were long data series available (see Ap-
pendix Table A.1). The other dataset are limitedy @ontaining time series in which the GPS radio-
collar worked properly. Furthermore, one collarbdxi (collar ID 12229) died on thd'4f October
2013. However as for this study only the data fiday to October was decisive, the monthly move-

ment ranges could be averaged using the datdedisttthree individuals.

2.1.2.2 Environmental data

To describe the environmental variability of thedst area throughout the observation period several
parameters, which were assumed to influence tloures selection of ibex, have been taken into ac-

count for the analysis.

The meteorological data for this study was mosttyorded by the meteorological station at Pont. It
is situated about 6000 m south-south-westerly fitoenstudy area at an elevation of 1951 m above sea
level (a.s.l.). The relevant parameters, i.e. s@dration, air temperature, wind speed and wimeaodi
tion, were recorded hourly (24h/day) and most ef data was used directly as an input for the re-
source selection function (RSF). Only for the emperature data, 15 (17 in 2011) ibuttons (1 record
per hour) were placed additionally in the studyaafeee Appendix Map A. 2), to get more precise
information about the actual and maximal air terapge values. However, their data was fragmen-
tary providing measurements only for about 70-8G%he study period. (In case of the two additional
ibuttons of 2011 it was even less.) The valueshefwind direction, originally indicated in degrees,

were cosine-transformed to deal with the circuasitthis variable.

In addition to the meteorological data, severakoffarameters were extracted from data layers de-

scribing the environmental variability of the stuatga (Table 1).

Table 1: Data layers. Description of the data layers and tteracteristics to describe the resource
selection of male ibex in summer

Type Name Description
Terrain DEM (ELEVATION) Digital Elevation Model (m)
ASPECT cosine-transformed (N-S)
SLOPE °rise
TRI Terrain Ruggedness Index (m)
Forage quality NDVI Normalized Difference Index
(16-days-composite)
Land use MEADOWS AND GRASSLAND meadows, meadowsl/pas grassland
WOODS AND BUSHES larch and Swiss stone pine woods, pioneer

woods, invasive bushes, bushes
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SCREES AND ROCKS rocks, screes, river banks
OTHERS abandoned crop fields, urban are-
as/infrastructure
Predation risk  DIST_HIKING_TRAILS Distance to hilgrrails (m)
DIST _REFUGE_AREAS 45 Distance to refuge areas
defined by a slope > 45 (m)
DIST REFUGE_AREAS_30 Distance to refuge areas
defined by a slope > 30 (m)
Microclimate = SECTOR hydro-geographic sectors (1-5)

Elevation, aspect, slope and ruggednegshe elevation data for this study area was tét@n a Dig-

ital Elevation Model (DEM) with a spatial resolutimf 10m, provided by Regione Autonoma Val
d’Aosta. Based on that, the aspect and the slope generated in ArcMap 10.1, a GIS-software prod-
uct from ESRI. As the aspect was calculated in elegyrit was subsequently cosine-transformed to
take the circularity of this variable into accoubte to the fact, that the heterogeneity of an erea
important variable for predicting the habitats stdd by species ( Koehler, G.M. and Hornocker,
M.G. 1989; Fabricius, C. and Coetzee, K. 1992), rimggedness of the area was also considered.
Therefore, the terrain ruggedness index (TRI), &Bterived index which was calculated using the
DOCELL code developed by Riley et al. (1999), vadeh as a measure.

NDVI — The Normalized Difference Vegetation Index (NPV& global vegetation indicator that
strongly correlates with the above ground net pryim@oductivity (Pettorelli et al. 2007), was also
considered as a possible parameter influencingetb@urce selection of ibex. It is derived from kate
lite-based data using the ratio of red light (REDY near-infrared light (NIR) reflected by the viege
tion (NDVI = [NIR — RED] / [NIR + RED]; Hamel et aR009). The NDVI was chosen as a possible
predictor for the RSF because, as Pettorelli ef28111, S. 16) noted, ittan be used to assess tem-
poral aspects of vegetation development and qualitiiis correlation between the NDVI and the
quality of vegetation was detected by Hamel e(2009), who discovered that the NDVI is a main
driver in predicting the annual variation in timin§ peak faecal crude protein in mountain ungulates
which, according to her, is a good indicator of etagion quality. In addition, there are many other
studies which proved that NDVI is an efficient asignificant predictor of large herbivores’ move-
ments and migration patterns (e.g. Mueller et @08 Boone et al. 2006; Pettorelli et al. 2005)e Th
NDVI data, which was used for this study, was ptled by the Earth Resources Observation and Sci-
ence Center (EROS) and was acquired by the mod@stéution imaging spectroradiometer
(MODIS) on board of the AQUA satellite. It has asgl resolution of 250m and due to measurement

errors caused by cloud covers the daily NDVI resavgre taken to compute a 16-day-composite.

Land use- The land use categories are extracted from auaedmap obtained from Gran Paradiso
National Park. It is based on aerial survey andequent validation on the ground. For the analysis,

the land use types were simplified to four mairegaties (see Table 1).
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Refuge areas- Based on several publications (Fox et al. 188#kstuhl und Neuhaus 2001; Kohl-
mann et al. 1996), the refuge areas were definéldeamones in the study area with a slope > 45%and
land use type of rocks and screes. They were d@atércMap 10.1 by intersecting the land use layer
with the slope layer. Additionally also a seconflige area layer was generated, using all sites avith
slope of over 30° while keeping the land use typeooks and screes, to test the definition of these

zones.

Hiking trails — Furthermore the distance to the nearest hikiaigstand the frequency, in which the
nearest hiking trail was used, were consideredoasilple predictors for the habitat selection ofemal

ibex. The data of the hiking trails was therefaryided by the National Park.

Hydro-geographic sectors The hydro-geographic sectors (see Appendix Ma@)Adescribe areas
with certain microclimates, as suggested by loddlife managers. They were defined using a geo-
morphological approach considering the watershindspeaks and the bottoms of the secondary val-

leys.

2.2 Methods

All pre-calculations and the analysis were carriedgt using the statistic program R 3.2.0.

(https://www. r-project.org/)

2.2.1 Predicting air temperature data

In order to discover whether the maximum or therlyoair temperature is more crucial for male ibex
in their habitat selection, both possibilities negdo be tested as input variable for the resosear-

tion function (RSF), to see which one explains nadréhe selection behaviour of male ibex.

2211 Predicting hourly air temperature data

The air temperature data, which was included irRB€& as a possible predictor, was pre-calculated by
means of an interpolation model, which predictea dir temperature values for the whole study area
considering certain spatial and temporal featuissthe data to fit this interpolation model waseiak
from the ibutton stations, at first the missingtamperature values in these datasets had tolée tid
ensure a good interpolation over time.

Therefore, for every ibutton the incomplete datasa$ used as the response variable (y) to fit a
linear model (LM) (1), calculating the parametestimates (;) for every explanatory variable (3o

predict the missing values, considering a certaioreéerm ().
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(1)

In this case the air temperature values of thedhustations (y) were predicted depending on the
time (X,), the Julian date (X and the year (3 as well as on the air temperature data recortétea
weather station at Pont {)X as it was strongly correlated with the fragmentaeasured datasets of
the ibuttons. The few missing values in the weasit@tion’s data were filled by respectively caltula
ing the mean of the air temperature values one hefare and one hour after the time when no value
was measured.

As the correlation between the time, respectiviedy dulian date, and the air temperature data was
not expected to be a linear correlation, but acdbi case of time) and a squared one (in caselof J
ian date), the two parameters were corresponderdlyded in the LM. Furthermore two interactions
were considered in the model, to take into accthattthe range of air temperature during a day may
differ among the Julian date, as well as that thed of the air temperature depending on the Julian
date may differ across the years.

In case of the weather station data, a linear tadmoa with the ibutton data was assumed, since the
temperature profiles showed similar patterns antbnge measuring points. However, a certain time
lag was detected between the meteorological statidnthe ibutton stations, which is probably due to
differences in elevation between the weather stadiod the ibuttons sampling points. Therefore the
ibutton datasets were temporally shifted, to acdmimghe best possible correlation between each i-
button and the weather station for an improvemérthe prediction model. After fitting the model
with the shifted data and calculating the missiafugs, the whole datasets were shifted back, to not
manipulate the actual time of the daily temperapaterns. As the i-button datasets were also gtron
ly correlated among each other, in some casesotin@leted dataset of another i-buttorn)(¥as used
to fit the prediction model instead of the weatstation data.

In short, the modelling approach used either data the meteorological station or from another-ibut
ton sampling point in order to accomplish the Ipgstictive model providing the best replacement for
not available data in ibuttons series.

For every model, either including the weather statiata or a completed ibutton dataset as a pre-
dictor, a stepwise algorithm repeatedly droppind adding one of the parameters was executed (us-
ing the step-function of the stats-package impldegkin R), to respectively get the best models ac-
cording to the Akaike information criterion (AICThe final models were subsequently evaluated in
terms of their predictive ability. Therefore forezy model the R? value, indicating the variancéhef
recorded ibutton data explained by the predicted,agas calculated as a measure.

Using these finally selected and validated modéks,air temperature data of the ibutton datasets
were completed by predicting the missing valuesni®ans of this procedure, information about the

air temperature conditions during the study pehiedame available at every ibutton station.

In the next step this ibutton data was interpolateldave the predicted temperature values for each

pixel of the study area at any time and date ofséeson. Therefore, the completed air temperature

9
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datasets as well as some spatial data of the bstadions were taken to fit a temperature interpol
tion model calculating the hourly air temperatuadues depending on the time, the Julian date and th
year as well as on the elevation and the hydroggddc sectors of the ibutton stations. Both the as
pect and the radiation, which were also assumétlteence the air temperature values, were, howev-
er, disregarded to avoid the risk of losing theap@eters for the final resource selection analysestd
collinearity problems. For interpolation a generadl additive model with integrated smoothness esti-

mation (GAM) was chosen (mgcv-package in R), assgraiGaussian distribution of error.

The GAM basically extends the GLM through the plisisy of replacing the linear predictors X
with a smooth function of the parametefX3, so it allows also for non-linear responses tséhvar-
iables (2).

)

The smooth function can be estimated by any sgddtesmoother, which can be for example a local
average estimate like the running mean or the nghmedian (Hastie, T. and Tibshirani, R. 1986).
However, for some covariates (seg) Xtill a linear fit can be forced (Hastie, T. ahdbshirani, R.
1986).

In case of the interpolation model a smooth fumcti@s calculated for the time as well as for the
Julian date of each year and also for the inclundtsgtaction between the time and the Julian ddte. T
year and the hydro-geographic sector however weegiated in the model as factors, which is why
no smooth function was calculated for them. Fordlewation, which was expected to have a squared
correlation at the most, two ways of including frerameter in the model were compared, both ac-
counting for the risk of overfitting by using theA®l. In one way a smooth term for the elevation was
included; however, it was only allowed to fit a aggd correlation by setting the basis dimension to
represent the smooth term for this variable told@ctvwas the minimum possible. In the other way the
model was forced to fit the squared correlatioratigling the squared effect of the parameter asa lin
ar predictor.

Hence, two different models had to be validatedrtBig with these full models, in each case one
of the parameters or one of their interactions stapwise omitted, checking for an improvement of
the model according to the AIC. After getting thesbtwo models, subsequently their predicting abil-
ity was evaluated by cross validation. Therefommgle of 80% of the data was taken to predict the
remaining 20% and their correspondence was evaulsteneans of the R2 value. This procedure was
repeated 50 times. Subsequently the respectivétylated R? values were averaged and compared
among the two possible models. The one with thadsgpredictive ability was finally chosen to in-
terpolate the hourly air temperature values forgpexel of the study area.

Due to including the elevation and the time as ipteds, the interpolation model had a spatial

resolution of 10m and a temporal resolution of Bour

10
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2.2.1.2 Predicting maximum air temperature data

The input values of the maximum air temperaturelierRSF were also computed by an interpolation
model. Again, the data of the ibutton stations wsed to fit the model. The datasets of the maximum
air temperature were therefore calculated for ekghat each ibutton station based on the completed
datasets of hourly air temperature values.

Also in this case, a generalized additive modehwitegrated smoothness estimation (GAM) was
used for interpolation. The only difference to tietemperature interpolation model was the removal
of the time as a predictor. Due to smaller data@etspared to the hourly air temperature), addition
ly a generalized additive mixed model (GAMM) wakefil also using the mgcv-package of R. The
mixed model also describes the relation betweernrdbponse and the independent variables, but by
including a random effect it allows the coefficiemd vary depending on a grouping variable, which i
this case was the ibutton-ID. For every model tggain the two different ways of including the eleva
tion as a predictor were tested.

Hence, there were four different full models whied to be validated. In each case the best model
was selected again by a stepwise omission of otteegbarameters or one of their interactions, rigsti
for a model improvement according to the AIC. Sajoeatly, the four best models were also validat-
ed by means of a cross validation. Again, 80% efdhta were sampled and used to predict the re-
maining 20%. In case of the maximum air temperatii® procedure was repeated 500 times to get
the average predictive ability of every possibledalo The final best model to interpolate the maxi-
mum air temperature was then chosen accordingetom#an of the calculated R? values.

As the maximum air temperature interpolation madst included elevation as one of the parame-

ters its spatial resolution was 10m.

2.2.2 Resource selection analysis

The resource selection analysis was executed fodtffierent spatial extents, to consider the varat

of habitat use patterns with scale (Mayor et ah®Bowyer und Kie 2006).

The large scale was defined by the home rangeo$ite2 whole population of marked ibex (see Ap-
pendix Map A. 4). As an approximation for it a nmmmim convex polygon including all the observa-
tion points of marked ibex (MCP 100%) was calcudatg means of the program “Geospatial Model-
ling Environment (GME)”. It is a widely accepted tined in the analyses of home range, which pro-
vides the maximum habitat area of a specific spg@gan et al. 2006).

The smaller scale was described on an individwall Iy creating a buffer around every ibex observa-
tion point including only those areas that malexiban reach within a month. Considering that their
movement behaviour varies with time (Scillitaniadt 2012) the radius of the buffer describing the
AVAILABLE areas was determined on a monthly basisorder to define these reachable areas, the

telemetry data providing accurate information altbet movement behaviour of male ibex was used.
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2. Materials and methods

Therefore, the 75% quantile of the maximal monttdyered distances was calculated for every col-
lared male ibex. The average values were subsdyueken to define the radius of the buffer for
every month (see Table 2). The 75% quantile wasbyeused because it is not as susceptible to out-
liers as the absolute maximum.

Table 2: Radius of the buffer defining the monthly AVAILABILY (described by the 75%-quantile
of the monthly moved distances of male ipex

May June July August September October
400.2143 1358.137 1363.814 785.6982 1179.451 1026.2

Although the habitat use patterns do not vary avithh the spatial scale but also with the temporal
scale (Mayor et al. 2009; Bowyer und Kie 2006), thgource selection of male ibex was only investi-
gated for one time period using all the observatata collected from May to October in 2010 and
2011. Nevertheless, the daily and seasonal difte®im resource selection of animals were taken int
account by including temporal parameters in thdyaiga To properly describe the changes during a
day, both the actual time and also the part ofitnedivided in dawn, daylight and dusk, were consid
ered as possible predictors. For the depictiomefseasonal differences in resource selection]uhe
ian date, the month and also the 16 day periodghich the NDVI data was collected, were taken

into consideration.

As design for the resource selection analysis tBEDJAVAILABE respectively presence/pseudo-
absence design was chosen instead of the secondcomsnon presence/absence design (Boyce
2006). This was done due to the problem of defiiegain sites of the study area as unused or tbsen
of ibex. In the USED/AVAILABE design, however, angple of resource units which were detected to
be USED by an animal (= 1) through observations, @mpared with a sample of AVAILABLE
landscape locations (= 0) which could have beed bgehe species (Boyce et al. 2002). Thereby the
domain of AVAILABLE sites depends on the choserdgtgcale which has to be considered when

creating the datasets of available resource units.

To define the AVAILABLE locations on the large seaht first a number of 10.000 random points
were generated inside the MCP and the values diffezent data layers were extracted to the points
As the NDVI and air temperature values change dutie study period, the time, Julian date and year
of the observations had to be assigned to the ramonts to calculate the respective AVAILABLE
values. Besides this also the data of the indiviguahich was necessary for the analysis as well,
needed to be allocated to these points. Therefagdoh ibex observation a certain number of random
points were sampled out of the 10.000 random lamsdocations and its time, Julian date and year
were assigned to them as well as the individua détthe specific observed ibex and the size of the
group it was seen in. Additionally, every ibex alys¢ion and its corresponding random points got the
same number, as a so called stratum-ID, so the AXBLE data could be easily matched with the

USED data having the same temporal and individegtiures.
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For the smaller scale the 10.000 landscape locatimre also taken as a basis to sample a certain
number of random points, which subsequently gotrtéeessary data assigned. However, for each
individual the AVAILABLE locations were only sammleout of the random points situated within the
corresponding created buffer.

In order to understand the minimum number of abélaandom points required to characterize the
available environment properly, a simulation wasigieed and carried out by running a simple RSF
model with only the air temperature as predictdre hiumber of USED points (=1) was thereby kept
constant, while the number of AVAILABLE (= 0) posvaried, testing different amounts of random
points. This was done to verify when the paramstestimate for air temperature in the RSF was sta-
ble, and thus to define the minimum number of ramgoints per observation point required to fit the

more complex RSFs.

The actual resource selection behaviour of male viz@s investigated by means of a resource se-
lection function (RSF) with an exponential struet8) which gives the relative probability of selec
tion (w(x)) for each resource unit depending onuakies of its environmental parameter3 (danly
et al. 2002).

3
The coefficients () of this function were estimated by means of ashig regression with a binary

dependent variable (USED=1/0) indicating the USHEDQ AVAILABLE data. Therefor a generalized
mixed model (GLMM) (4) was fitted using the Ime4egage implemented in R.

4

By choosing the mixed model also random compongatelom effects (X and their estimates ;jju
could be added, which allowed adjustment for autetation and pseudo-replication (Boyce 2006) by
grouping interdependent samples. This way it ceseldconsidered that in some cases several marked
individuals were observed in the same group anck wmaus not independent (Z group-ID). Addi-
tionally, the dependency among observations ofsdree individual could be taken into account as
well as it could be ensured that the USED datavefyeibex is only compared to the appendant
AVAILABLE data with the same temporal and individwata. This was achieved by adding the stra-

tum-1D nested in the individual-ID as a second mncffect (£) to the model.

To avoid collinearity among the covariates of theded, the variables which were considered to be
problematic were tested by means of a correlatiatrirmicalculation based on the Pearson correlation
coefficient . Additionally, the Variance Inflation Factor (VIMas calculated to check for multicol-
linearity among the parameters. Only uncorrelatatgpendent (ff 0.7 and VIF < 3) variables were
analysed together in a model.

The better predictor out of two collinear variabtess chosen based on assessments of their bidlogica

meaningfulness in respect to the trade-off, whigtenibex have to face in their resource selection.

13



2. Materials and methods

the event of uncertainty, the better predictor waaluated by means of a random forest calculation
(randomForest-package of R), which ranks the ingpae of the parameters based on a certain num-
ber (n=500) of randomly generated decision trees.

As one aim of this study was to find out whethex #cttual or the maximum air temperature values
were more important for the resource selection afenibex in summer, both possibilities had to be
tested. So it was decided to run two GLMMs, eadfuiing either one of them as a predictor, to

avoid collinearity among to variables of the sanulet (r, = 0.7).

Hence, for every scale two model selections hdaetexecuted. As there were proportionally too
many possible parameters to fit the models withatvealable amount of data, in each case a preselec-
tion based on a random forest rank of all the pdsspredictors was carried out. Subsequently, a
backward selection was executed for each modgleotisely starting with the biggest possible and
stepwise omitting all the parameters and interastwhich didn’t contribute towards the model based
on Wald statistics (p > 0.05). The AIC value waadeirrelevant for the model selection, however, it
was calculated for every intermediate model as & good fneasure of the appropriateness of alter-
native modelsaccording to Boyce et al. (2002, S. 283). For fihal validation of the two different
mixed models of each scale, additionally their rivealg(R2m) and the conditional R2 value (R2c) were
calculated (using the MuMIn-package in R). The nraigvalue is a measure for the variance ex-
plained only by the fixed effects of a mixed modlereas the conditional R2 value evaluates the var-
iance explained by both, the fixed and random &fethe best model to estimate the coefficients of
the parameters for the RSF was finally chosendchescale based on both the AIC and the R2 values.
To test its performance, a 5-fold cross validatiooording to Boyce et al. (2002) was executed. The
Spearman-rank correlation was thereby used as aumeto evaluate its predictive ability (Boyce et
al. 2002).
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3. Results

3.1 Predicting air temperature data

3.1.1 Predicting ourly air temperature data

Almost all of the final models (see the structuréAppendix Table A. 2), fitted to calculate the sis
ing air temperature values in the ibutton datas#tewed a pretty high predictive ability with an-ad
justed R2 value of > 0.90. Only for the ibuttonkeMezzo (adjusted R2 = 0.82) and 7b.LevMezzo-
New (adjusted R? = 0.78) it was worse. The AlCuesl however, varied much among the models
between 3612.1 (for ibutton 14.Pianalnferno) an@b339 (for ibutton 4.LevMezzo).

Comparing the two best possible models to intetpdlze hourly air temperature (see Table 3) dif-
fering in the way of including the elevation asradictor, the model containing a smooth estimation
for this parameter performed distinctly better (A(725385.8; R2 = 0.684) then the one comprising
the squared effect as a linear predictoAIC = 10572.8.6; R2 = 0.660). Hence, it was takertre
final interpolation model for hourly air temperagur
Table 3: Interpolation model for hourly air temperature \eduEvaluating interpolation models with
different model structures (= estimates of factors or predictors with linearrelation; s=smooth

functions) by means of their AIC value AIC= difference between the best and the othezrgimod-
el) and the average R2 value (ac(R2) = mean ofaRfeg calculated by cross validation).

Model type Model structure AIC av(R?)
"4 $# % &$!"'( )
GAM OGSl 1) Cropsusl -/ S# 0 0684
1"t $# %&$I"( % &$!"™(01
GAM ") *00'$H,$! -1) *00'$H,$! -/ 10572.8.6  0.660
i

3.1.2 Predicting maximum air temperature data

For the maximum air temperature interpolation madsbd two models differing in the way of includ-
ing the elevation were compared for each model (gpe Table 4), the GAM and the GAMM. In the
case of the GAM, again the model containing a smestimation for the elevation resulted in lower
AIC and higher R? values. For the mixed model, heaveno considerable differences could be de-
tected (see Table 4).

Although the mixed models showed a slightly higheadicting ability (R? = 0.591) than the GAM (R?
= 0.589), it was decided to take the simpler modeg to the fact that the increase of the model-com
plexity did not cause a significant predicting impement and also to stay consistent with the ioterp

lation model of the hourly air temperature.
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Table 4: Interpolation model for maximum air temperatureuesl. Evaluating interpolation models
with different model structures;(= estimates of fixed effects either included a$des or as a predic-

tors with linear correlation;ssmooth functions of fixed effects;=@stimates of random effects) by
means of their AIC value (AIC= difference between the best and the otheemgimodel) and the

average R2 value (ac(R?) = mean of R2 values cledlby cross validation).

Model type Model structure AIC av(R?)

GAM I"# St % &$!"'( * 00'$r-/ $# 0 0.589
1"t $# %&$I"( % &$!"™(01

GAM ey 4 972.1 0.514
I"# $# % &$!"'( *%'$e-/

GAMM i 20 42 0 0.591

GAMM "4 $# %&$"( % &$I™(01 46 0591

*0%0'$e-/ $# 2/ 42

3.2 Resource selection analysis for male ibex

3.2.1 Resource selection on the large scale

Minimum amount of random points Considering the results of the carried out sitioh (see Ap-
pendix Figure A. 1), the data of AVAILABILITY forhe large scale was created with 15 random

points per observation point.

Collinearity and multicollinearity-To avoid collinearity and multicollinearity amotitge predictors of
the models, for the following problematic paramegairs (5 |0.7]) the better one was chosen. Be-
tween the DEM and the NDVI it was decided to tdke vegetation index instead of the elevation,
considering it to be biologically more meaningfuldataking into account that the effect of elevation
already is partly integrated by means of the anperature interpolation. For the rest of the proble
atic parameter pairs the random forest rank hdmetosed as decision guidance. So finally the refuge
areas defined by a slope > 45° were favoured deephes defined by a slope > 30°%r0.7) as well

as the slope was taken for the analysis insteateoffRI (f, = 0.9) because it happened to explain
more of the data’s variability. Also, it was dedid® take the Julian date instead of the montther t
16 days period §r> 0.9) and the time instead of the part of the @ay 0.9) as temporal parameters
describing the seasonal and daily differencessource selection of animals.

After omitting the named parameters no further fgmobin terms of mulitcollinearity was detected
(VIF < 3).

Model selection- In the preselection of both models (one inclgdime air temperature and one in-
cluding the maximum air temperature as a predi¢t@)age, the frequency in which the hiking trails
have been used, the time and the land use wereveehitom the model as the least important pa-
rameters. In the subsequent backward selectionthés@olar radiation and its interaction with the
aspect were omitted. In case of the model inclutieghourly air temperature as a predictor, adalitio

ally the interaction between the Julian date amddin temperature data was left out as it was non-
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significant. In both cases the model, favouredheytiackward selection, also had the lowest AIC val-
ue. Both calculated R? values were equal in casadh selected model, which means that the random
effects did not contribute to explain the variant¢he data. Comparing these models, the one includ
ing the maximum air temperature as a predictoroperd much better with an AIC of 16901.69 and
R2 values (R2m/R2c) of 0.5279, than the one coimgithe hourly data (AIC = 274.91, R?m/R?c =
0.4441). Hence, it was used as the final modealoutate the parameters’ estimates for the RSkeat t
large scale (see Table 5). The Spearman rank 5efolsk-validation of this model indicated a good
predictive fit for each fold of the data,(= 0.988, , =0.988, ;=0.976, ,=0.976, 5 = 0.976).

Table 5: Resource selection at the large scale. Generarlimixed model coefficients ), standard
error (SE), Wald statistics (z) and probabilityues (p) comparing USED with AVAILABLE loca-
tions within the home range of the entire populatid marked ibex (MCP) in the study area in the
years 2010 and 2011.

Variable SE z p
scale(MAX_TEMPERATURE) -0.22608 0.03423-6.606 < 0.001
scale(MAX_TEMPERATURE)"2 -0.09623 0.03200-3.007 0.003

scale(NDVI) -0.13333 0.03275 -4.071 <0.001
scale(NDVI)"2 -0.55025 0.03179-17.307 < 0.001
scale(SLOPE) -0.13945 0.03324 -4.196 <0.001
scale(SLOPE)"2 -0.25423 0.02304 -11.036 < 0.001

scale(cos(ASPECT)) 0.00041 0.020720.020  0.984
scale(cos(ASPECT))"2 -0.07597 0.028442.671  0.008
scale(log(DIST_HIKINGTRAIL)) -0.62554 0.02870-21.794 < 0.001
scale(log(DIST_HIKINGTRAIL))"2 -0.08779 0.01100 -7.982 < 0.001
scale(DIST_REFUGEAREA) 0.28369 0.03526 8.046 < 0.001
scale(DIST_REFUGEAREA)"2 -0.28667 0.03009-9.528 < 0.001
scale(GROUP_DIM) 0.00856 0.03425 0.250  0.803
scale(GROUP_DIM)"2 -0.02177 0.01701-1.280  0.201
scale(cos(WIND_DIRECTION)) 0.01707 0.02071 0.824  0.410
scale(cos(WIND_DIRECTION))*2 0.01270 0.02846 0.446  0.655
scale(WIND_SPEED) 0.00956 0.03174 0.301  0.763
scale(WIND_SPEED)"2 -0.01220 0.01238-0.985  0.324
scale(JULIAN) -0.14885 0.03118 -4.774 < 0.001
scale(JULIAN)"2 -0.13140 0.03442 -3.818 <0.001

scale(log(DIST_HIKINGTRAIL))*scale(GROUP_DIM) -0.07528 0.01950 -3.860 < 0.001
scale(DIST_REFUGEAREA)*scale(GROUP_DIM) -0.28893 02K92 -10.733 < 0.001
scale(MAX_TEMPERATURE)*scale(NDVI) -0.66806 0.0397316.816 < 0.001
scale(cos(ASPECT))*scale(cos(WIND_DIRECTION)) 0.886 0.02067 3.699 <0.001
scale(cos(ASPECT))*scale(WIND_SPEED) -0.07025 00022 -3.183 0.001
scale(cos(WIND_DIRECTION))*scale(WIND_SPEED) -0.@83 0.02025 -0.911 0.362
scale(MAX_TEMPERATURE)*scale(JULIAN) -0.14947 0.085 -4.216 <0.001
scale(NDVI)*scale(JULIAN) -0.51781 0.0344915.013 <0.001
scale(SLOPE)*scale(JULIAN) 0.18231 0.03006 6.064 < 0.001
scale(cos(ASPECT))*scale(JULIAN) -0.08300 0.021243.907 <0.001
scale(log(DIST_HIKINGTRAIL))*scale(JULIAN) -0.078630.02078 -3.784 <0.001
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scale(DIST_REFUGEAREA)*scale(JULIAN) -0.33508 0.631 -10.606 < 0.001

scale(cos(ASPECT))*scale(cos(WIND_DIRECTION)) -0.05672 0.02001 -2.835 0.005
*scale(WIND_SPEED)

Resource selection The strongest driver of the resource selectiomale ibex at a large scale was
the interaction between the maximum air temperagunek the NDVI (see Figure 2). If the maximum
air temperature was low, ibex clearly selectedsareiéh a high vegetation index. In case of incrdase
values however they mainly preferred areas witheloNDVI values. As seen in Figure 2 the relative
probability of selection is in both cases very higlhich demonstrates the strong influence of this
pattern on the general resource selection of rbabeeis.

Both the NDVI and the maximum air temperature sttb@adso a significant variation in their selection
depending on the Julian date. For the selected NDVa&s even stronger than for the temperature data
(see Table 5). As shown in Figure 1, in springitiex tend to mainly choose areas with a high vegeta
tion index, whereas its selected values eviderdglyrehse over the season. In case of the maximum air
temperature conditions, they only went for warmaces in the beginning of the growing period. Dur-
ing the rest of the year they clearly went for tbelest available locations (see Figure 1).

Another crucial factor for the resource selectiaswthe distance to the refuge areas. Also in tEs ¢
the ibex showed a significant variation in theitesgon behaviour of this parameter over time (see
Table 5). In spring they clearly preferred areasher away (~ 350m), whereas they exhibited a
slighter preference for location in shorter distoger the rest of the season (see Figure 1).nargé
especially the solitary male ibex selected the safaa away from the refuge areas whereas larger
groups of ibex tend to stay at places closer tmt{see Figure 3).

Besides these findings, male ibex exhibited a cdedaction of habitats close to the hiking traiithw
only slight differences in the importance as a@ri@mong the different group sizes (see Figuran@) a
over the seasons (see Figure 1).

In case of strong winds from the south, they obsipyreferred to stay in north-faced aspects (see
Figure 4). Apart from that the male ibex didn’t shany strong selection pattern in terms of the etspe
(see Figure 1).

On view to the slope they mainly selected areasedium steepness, showing a slight preference for

flatter terrain in spring (~ 20°) and steeper t@erra autumn (~ 40°) (see Figure 1).
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Figure 1: Relative selection probability depending on thkadudate for a) aspect, b) slope, c) dis-
tance to hiking trails, d) distance to refuge areqsnaximum air temperature and f) NDVI at theéar
scale considering the respective availability
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Figure 4: Relative selection probability for the aspect dejiep on the wind direction in case of low
wind speed (left) and high wind speed (right) &t ldrge scale

3.2.2 Resource selection on the small scale

Minimum amount of random points Considering the results of the carried out satioh (see Ap-
pendix Figure A. 2), the data of AVAILABILITY forhe small scale was created with 13 random

points per observation point.

Collinearity and multicollinearity- For the small scale the same parameter pairs preblematic due

to high correlation as at the large scale. Althotlgh DEM wasn'’t as highly correlated to the NDVI
(ro =—0.7), still only one of those parameters cdagddncluded in the analysis. Hence, only the NDVI
was taken as a predictor. According to the randamast ranking of the other strongly correlated-vari
ables, the same parameters happen to be bettéctpredor both, the predictors describing the envi
ronmental variability and the ones describing terapohanges. In contrast to the larger scale, hewev
er, the hourly air temperature and the time weoestoongly correlated (= 0.7), to be both included
in the model. As according to the random foresk the air temperature explained more variability, i
case of the model including the hourly temperatuaieies, the effect of time was omitted whereas it
was kept as an input variable for the RSF for the iocluding the maximum values.

Also at the finer scale no further problem in terofignulitcollinearity was detected (VIF < 3) after

omitting the named parameters.
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Model selectior- Again both models needed to be simplified byeagelection of the most important
parameters. Based on the random forest rank of madel again the age, the frequency in which the
hiking trails have been used, the land use andage of the model including the maximum air tem-
perature, the time had to be left out, so the n®deuld converge properly. In the subsequent back-
ward selection, in each case, also the radiatiohitarinteraction with aspect were removed from the
model as well as the interaction of the respedaivéemperature parameter and the Julian date nAgai
the models favoured by the backward selection sthemved the lowest AIC. In contrast to the large
scale, this time the random effects clearly contglto explain the variance of the data (R2m <9.R2c
Giving both the AIC and the R2 values, the modeluding the maximum air temperature (AIC =
19267.89, R2Zm = 0.119, R2c = 0.674) again happersetform better than the one containing the
hourly air temperature AIC = 84.93, R2m = 0.117, R2c = 0.673), which isywhwas finally chosen

to calculate the parameters’ estimates for the &3ke small scale (see Table 6).

According to the Spearman rank 5-fold cross vailiaathe model had a good predictive fit, with a
correlation index for every fold of, = 0.952, , =0.939, ;=0.915, ,=0.976 and s = 1.000.

Table 6: Resource selection at the small scale. Generalrlimixed model coefficients ), standard
error (SE), Wald statistics (z) and probabilityues (p) comparing USED with AVAILABLE loca-
tions within the monthly reachable areas of maéxib

Variable SE z p
scale(MAX_TEMPERATURE) -0.09198 0.02670-3.445 < 0.001
scale(MAX_TEMPERATURE)"2 0.02893 0.01815 1.594 0.111

scale(NDVI) 0.12423 0.02703 4.596 < 0.001
scale(NDVI)*2 -0.19048 0.01844 -10.332 < 0.001
scale(SLOPE) -0.06318 0.03228 -1.957  0.050
scale(SLOPE)"2 -0.22402 0.02242 -9.993 < 0.001
scale(cos(ASPECT)) -0.06126 0.01993-3.074  0.002
scale(cos(ASPECT))"2 -0.09079 0.02733-3.323 < 0.001
scale(log(DIST_HIKINGTRAIL)) -0.65375 0.02996-21.825 < 0.001
scale(log(DIST_HIKINGTRAIL))"2 -0.09791 0.01113 -8.801 < 0.001
scale(DIST_REFUGEAREA) 0.31892 0.03577 8.915 < 0.001
scale(DIST_REFUGEAREA)"2 -0.25226 0.02557-9.867 < 0.001
scale(GROUP_DIM) 0.10917 0.03501 3.118  0.002
scale(GROUP_DIM)"2 -0.04693 0.01702-2.757  0.006
scale(cos(WIND_DIRECTION)) -0.00500 0.02018-0.248  0.804
scale(cos(WIND_DIRECTION))*2 -0.00933 0.02739-0.341  0.733
scale(WIND_SPEED) 0.08627 0.03086 2.796  0.005
scale(WIND_SPEED)"2 -0.03367 0.01185-2.842  0.004
scale(JULIAN) 0.06703 0.02646 2.533  0.011
scale(JULIAN)"2 -0.00956 0.02931 -0.326  0.744

scale(log(DIST_HIKINGTRAIL))*scale(GROUP_DIM) -0.07937 0.01879 -4.225 < 0.001
scale(DIST_REFUGEAREA)*scale(GROUP_DIM) -0.240210D131 -9.882 < 0.001
scale(MAX_TEMPERATURE)*scale(NDVI) -0.22239 0.02389-9.307 < 0.001
scale(cos(ASPECT))*scale(cos(WIND_DIRECTION))  0.864 0.01987 3.264  0.001
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scale(cos(ASPECT))*scale(WIND_SPEED) -0.08801 05021 -4.080 <0.001
scale(cos(WIND_DIRECTION))*scale(WIND_SPEED) -0.0I5 0.01990 -0.758 0.449
scale(NDVI)*scale(JULIAN) -0.19628 0.02518 -7.795 < 0.001
scale(SLOPE)*scale(JULIAN) 0.14703 0.02746 5.354 < 0.001
scale(cos(ASPECT))*scale(JULIAN) -0.06797 0.019633.463 0.001
scale(log(DIST_HIKINGTRAIL))*scale(JULIAN) -0.068450.01932 -3.542 <0.001
scale(DIST_REFUGEAREA)*scale(JULIAN) -0.26711 0.826 -9.953 <0.001

scale(cos(ASPECT))*scale(cos(WIND_DIRECTION)) -0.07099 0.01934 -3.671 <0.001
*scale(WIND_SPEED)

Resource selection Also at the small scale the interaction betwdBvI and maximum air tempera-
ture was the main driver of resource selection fSgare 6). According to it, male ibex strongly se-
lected areas with high NDVI values, when the maxmair temperature was appropriately low.

Unlike the large scale, in terms of the maximuntemnperature conditions the selection behaviour did
not vary depending on the Julian date, exhibithmat male ibex always selected the coolest available
locations (see Figure 7).

In case of the NDVI, however, male ibex still showaeclear selection pattern significantly changing
in time (see Figure 5). The main difference toltrge scale is thereby not shown in the selectéd va
ues of the vegetation index, but in its importafarethe resource selection, exhibiting a greatéuin
ence in autumn than in spring.

Also in terms of the distance to the refuge artresjmportance of the parameter as a driver inedkas
again in autumn; however, it still mainly influenkcthe selection in spring, showing a strong prefer-
ence of areas far away from the refuge areas (mp%€ee Figure 5). The dependency on the group
dimension exhibited the same pattern as at the lsegle, revealing that bigger groups are moréylike
to be found close to the refuge areas than fuehary (see Figure 8).

As a selection pattern regarding the distance kmdpitrails, male ibex showed also at the smaller
scale a clear preference for locations within atstlistance. Its importance as a driver therebyedar
only slightly among the different group sizes (5egure 8) and seasons (see Figure 5).

In contrast to the large scale, a certain selegiaitern depending on the Julian date was alsbleisi

in case of the aspect, with a minor preferenceoothAfacing areas in spring and a clearer seleaifon
south-faced locations in autumn (see Figure 5).Areéerence of north-faced aspects in case of gtron
winds form the south was still also exhibited & fime scale (see Figure 9).

As favorited slope, they again mainly selected adanedium steepness, showing a significant selec-
tion dependency on the Julian date by moving frathar flat areas (~ 20°) in spring to steeper areas
(~ 40°) in summer and autumn (see Figure 5). Coetptr the larger scale, however, the importance

of this variable as a driver of the resource siladhcreased, especially at the end of the season.
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4. Discussion

This study revealed that the resource selectianadé ibex is over all mainly driven by their traof-
decisions between maximizing the energy intakeddgcsing high quality food (high NDVI), and re-
ducing the exposure to unfavourable climate comadi(van Beest et al. 2012), which for ibex primar-
ily are high air temperature values. Thereby itldde determined that ibex actually select thebiha

tat rather in expectations of the maximum values tim consideration of the actual conditions. This
was shown for both scales where in each case soenee selection model including the maximum air
temperature data, performed much better than thérmuding the hourly data. This means that even
in the morning the highest temperature value ofddwe explained much more of the selection behav-
iour of the male ibex than the actual temperatdigea consequence it can be assumed that ibex have a
certain predictive capability for imminent temperat conditions which might possibly be explained

by having a certain perception of air pressurdnetike.

Considering the results of the resource selectimtyaes at both scales in respect to the maximum
air temperature conditions, male ibex clearly faeolthe coolest available places, especially in-sum
mer, which conforms to the results of previous igsidAublet et al. 2009). But also throughout the
rest of the season they strongly avoid areas vitthen air temperature values. Only at the largéesca
did they show a slight selection of warmer placesgring. This behaviour was assumed to mainly be
a consequence of favouring good food quality oeduced heat exposure, as even in the selected are-
as with high food quality the maximum air temperatdid not exceed their heat related threshold of
15-20°C (Aublet et al. 2009). At the fine scalestelection pattern was already not detected any
more, showing a constant preference of the ibexhi@rcoolest available locations independent of the
season. This indicates that also in spring, wher #elect their habitats mainly based on the pealid
food quality, they still show a certain thermoregidn by selecting the coolest places within the

available area.

In respect to the wind, however, they did not eittite expected thermoregulation behaviour. In
contrast to the expectations, the data revealddaa avoidance of windy areas. This was especially
seen in case of strong winds from the south whep $ielected north-facing areas sheltered from the
wind. Since the wind was found to significantly iease the vigilance behaviour of animals (Carter
und Goldizen 2003), the selection pattern showiheyibex might possibly result from their need to
reduce predation risk, as strong winds could inhlmir hearing and leave them unaware of possible
predators sneaking up on them. This however is ardyspicion and further analyses are clearly re-
quired to explain the selection behaviour of mhakxiin relation to the wind. The absence of a corre
sponding selection pattern in the event of northethds is assumed to be caused by the orientation

of the valley which opens out to the north-eastgeguently, when the wind came rather from the
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north, it was directly diverted into the valley. @otually no specific wind sheltered aspects were
available. These circumstances and also the gmsthility of the wind in terms of both speed and
direction might probably be a reason why no cleafgrence of a certain aspect over time could be

detected in the analysis.

For the NDVI, indicating the food quality of theahable resource units, however, a distinct selec-
tion pattern could be identified over the seasos.efpected the ibex showed a strong selection of
areas with high quality food in spring, when theximazation of the energy intake probably was most
important for them to compensate the forage shertagy faced in winter due to limitations by snow
(Bon et al. 2001). A reason for why they thereby dot go for the highest available NDVI values
might be the fact that vegetation exhibiting algehigh productivity index are less attractive for-
gulates, as they accumulated structural tissuesshad an increased fibre content, which leads to
worse digestibility (Pettorelli et al. 2011). Ovbe season then a clear decrease of the select¥dl ND
values could be determined. In summer this wasgirgimainly caused by the aitemperature con-
straints, which [...] force them to [also] forage sub-optimal patchégBrivio et al. 2014, S. 1657)
providing lower food quality, but probably also vegd quantity when dominated by rocks and screes.
In autumn, however, the selection of low qualityafye might be a consequence of both the limitations
due to the predominant maximum air temperatureegafind also the general scarcity of good food in

this time of the year (Mysterud et al. 2011).

Regardless of the quality, they seemed to alwaye hsstrong preference for areas with high food
quantity. This was inferred from the predominanesion of locations close to the hiking trails,
which was also detected by Grignolio et al. (200Aa)these trails are mainly situated in the megdow
the places in a short distance from them obviopsbyide a greater quantity of forage than the steep
rocky slopes, which are mostly found further awepnf the trails (Grignolio et al. 2007a, S. 1489).
The unexpected great importance of this food drparameter in summer, when they usually tend to
completely stop feeding during daytime and ratké&eat to rocky areas at higher elevations dubkédo t
prevailing air temperature conditions (Aublet et2009), can be traced back to the fact that the da
for this study was mainly selected in the morniagsl evenings. According to Brivio et al. (2014)
exactly at these times of the day, especially @rttornings, ibex rather intensify their forage ati
in summer to compensate the reduced feed intakegdtire hottest hours of the day and consequently
select areas with a high food density. In spring antumn however when the maximum air tempera-
ture values are lower, they probably are able twosh their habitat in respect to the forage quality
rather than its quantity, which might be the rea®onhe slightly decreased importance of this para
eter in the beginning and end of the season. Lgpéinthe selected distance to the hiking trails de-
pending on the group size, larger groups of ibexau a strong selection of the areas a short distan
away, where enough food for everyone was provi@etkller groups were also mostly found close to
the hiking trails, however the predictors importaneas lower, as they might also find sufficientfor

age where the quantity is lower.
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The group dimension also showed an influence imaneedo the chosen distance to refuge areas.
However, the results were completely contrary sdkpectations, indicating that bigger groups were
more likely to be seen close to the safer areasgbhbtary ibex. A possible explanation for thaghti
be, that the respective distance to the refugesasea not selected due to its importance in reducin
the predation risk, but due to the respective marinair temperature and NDVI values, which both
increase with a growing distance to the refugesafeae Figure 10). Hence, the preference for loca-
tions close to those areas shown by larger grofifse® would indicate that they mainly go for the
cooler places closer to rocks, however, only ascarsdary selection pattern as for large groups the

distance to the hiking trails is of greater impoda for their habitat choice.
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Figure 10: Available NDVI and maximum air temperature valuehim different distances to the
refuge areas (seasonal average).

The interpretation of the selected distance toréfege areas as a consequence of the preferred air
temperature and NDVI conditions would also expldia seasonal pattern at both scales. The strong
preference for places further away from the refaggas in spring could therefore be explained by the
high food quality (NDVI ~ 0.5) which was mostly fied within the selected distance of 200-300m (see
Figure 11). As the maximum air temperature incréased the food quality becomes of less im-
portance for the ibex however, they seemed toaeteehigher grounds (see Figure 12) moving closer

to most of the refuge areas (see Figure 13) wiherait temperature is cooler.

A movement trend to higher elevation in consequedncthe chosen trade-off between the food
quality and the reduction of heat-stress, would algplain the shown selection pattern of slopeo#t b
scales. As expected, in the beginning of the grgweason ibex stay in flatter terrain, where accord
ing to Grignolio et al. (2007a) the food densitymsich higher than in the rugged terrain. Over time
however, when moving to higher elevations theydeser to steep areas (see Figure 13), which is
also shown by the data.
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In the beginning of the growing-season, when thgimiaation of the energy intake is still important
for the male ibex, the seasonal migration to stekmations closer to refuge areas might not oy b
caused by increasing air temperature values, batla an effect of following the emerging vegetatio
up along the altitudinal gradient as accordingweZel-Schielly et al. (2009, S. 104) young plaate

“rich in both utilizable energy and protéin

Overall, it can be summarized that the seasonattieh patterns shown for the parameters were
mostly a consequence of the respective trade-aiias of the male ibex weighing up their need to
maximize their energy intake by foraging high qtyalood against their exigency to reduce the expo-
sure to heat. And in fact, at both scales the aatéwn between NDVI and maximum air temperature
was the main driver of the resource selection ef¢hanimals, showing the strong preference for plac
es providing high quality food when maximum air perature was low and a clear avoidance of these
locations in favour rather rocky areas (= low NDWihen the maximum air temperature was high.

A reason for the rather low importance of predatisk reduction in the habitat selection of malexb
might be the fact that the data was mostly colicteadult male ibex (5 year). Therefore, the ob-
served selection patterns were mainly driven byemwidlex which do not have to fear predation as
much as young individuals and females (GrignolialeR007a). This could also be an explanation for

the general low importance of the age as a pararfeetehis analysis.

Comparing the results among the chosen scalesisgorilarities could be determined. One is ob-
viously that on the fine scale they always predestay in the cooler areas regardless of the Jdbas
The other difference is shown in the very differemighting of the parameters over time, especially
autumn. On the large scale the importance as arddiecreased for every predictor at the end of the
season, whereas it increased on the fine scalessilge explanation for this could be that at trge

scale the selection of male ibex was mainly drilsgra parameter, which was not considered in the
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model, and only at the second scale, where an®K&LABILITY was presumed, the selection
pattern in regard to the included parameters cemldrge more strongly. As the rutting season begins
in this time of the year the ‘missing’ parameteghtirepresent a certain internal factor connectiga w
the rutting behaviour of by male ibex in autumnwéwer, this is only a suggestion and regarding to i

further analyses are clearly required.

Despite those differences among the scales, in suynthe results were pretty similar and most of
the selection patterns shown within the monthlycinedle areas were already exhibited at the large
scale. Accordingly, the second scale did not reddlgcribe an important decision scale for male ibex
in summer (Bowyer und Kie 2006). Further downsapfior small scale analyses, however, was lim-
ited due to the large spatial resolution of the NDayer (250x250m). As according to Mayor et al.
(2009) the spatial decision scales are ultimatelyeld to the temporal ones (see Figure 14), small
scale analyses were additionally restricted byl#ic& of ibex data collected during midday, so the
daily selection behaviour of ibex and their comedttrade-off could not be examined on a small

scale.
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Figure 14:"The link between spatial and temporal scales bftatiselection" as depicted from Mayor
et al. (2009) in their publication in terms of hHabiselection at multiple scales.

Therefore, further analyses are required, in whiiehuse of telemetry data is recommended to ensure
a sufficient temporal resolution of data collecti@iving the results of this analysis it would aauhi-

ally be necessary to get more precise data abeutligitribution of high quality food over the study
area, as it is evidently an important driver of theource selection of male ibex, but according to
Zweifel-Schielly et al. (2009, S. 103) also showstrang variation in space, especially in ruggesd te

rain.
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In conclusion, the findings of this study clearhos/ed that the resource selection of male ibex is
first of all driven by their seasonal dependentl¢raff decisions between reducing their exposure to
unfavourable climate conditions, especially to head maximizing their energy input by foraging
high quality food. Moreover, it could be shown tlnatselecting their habitat, these animals react in
expectation of the maximum air temperature valaéiser than in consideration of the current circum-
stances. Regardless of the food quality and thdopneant temperature conditions male ibex addi-
tionally exhibited a clear preference for areasviging high food quantity. The exposure to possible
predators, however, was not detected to have & grmgect on the habitat selection of male ibex.

which is consistent to the result of former studies
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6. Appendices
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Map A. 1: Transects, which have been walked twice a daydta dollection of ibex' location.

37



6. Appendices
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Map A. 2: Ibuttons. Spatial distribution of the ibuttons, ainiwere set up for hourly recording the air

temperature data in the study area in the year8 @baittons 1-15) and 2011 (additional ibuttons; 7b

14b).
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Map A. 3: Hydro-geographic sectors. Zones in the study aidacgrtain microclimates.
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Map A. 4: Minimum convex polygon (MCP). Large scale for thealgsis defined be the home range
size of the whole population of observed marked {fpeown points) in the years 2010 and 2011.
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6. Appendices

Table A. 1: Total number of locations. Number of locations reeal for each collared male ibex
(GPS-collar ID) every month from May 2013 to AfD14.These telemetry data was used to depict
ibex movement behavior and thus define availabdftfine scale resource selection functions.
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Table A. 2. Summary of the models used for filling the missing values irhe I-button datasets

model parameters

- 1 i 2

I-button gmf? y year Julian Julian®2 time time”2 time”3 Julian*time Julian*year adj. R* - AIC
1.Tignet no ibutton (2. yes  yes yes yes  yes yes yes yes 0.94¢ 24988.¢
2.Panel 3 hour: weather static  yes yes yes yes  yes yes yes yes 0.93¢ 23904.¢
3.Granzett 3 hour: weather static  yes yes yes yes  yes yes no yes 0.93: 20230.¢
4.LevSoti 3 hour: weather static  yes yes yes yes  yes yes yes yes 0.92: 25953.¢
5.ZigZac no ibuttonn (£) no yes yes yes  yes yes yes no 0.92: 19956.
6.Lezol 2 hour: weather static yes  yes yes yes  yes yes no no 0.931 18384.¢
7.LevMezz( 2 hour: ibuttor (6.) yes  yes no yes  yes yes yes yes 0.82( 20958.(
8.Bivio 2 hour: weather static  yes  yes yes yes  yes yes yes yes 0.91( 24352.¢
9.LevSopr: no ibuttion (£.) yes  yes yes no  yes yes no yes 0.941 20161.:
10.Laus270! no ibutton (12) no yes yes yes  yes yes yes no 0.94¢ 21128.:
11.Timor250! 2 hour: ibutton (€.) yes  yes yes yes  yes yes yes yes 0.95( 17380.(
12.Timor270! 2 hour: weather static  yes  yes yes yes  yes no yes no 0.90( 23733.¢
13.Timor290! no ibutton (12.) yes  yes yes yes  yes yes yes yes 0.91- 24250.!
14.Infernc no ibutton (12) yes  yes yes yes  yes yes yes yes 0.911 20784.¢
15. Laus290 no ibutton (€. yes  yes yes yes  yes yes no yes 0.951 18416.!
7b.LevMezNev no ibutton (€.) no yes yes yes  yes yes no no 0.77¢ 15388.¢
14b.Pianalnfern 1 houl ibutton (£) no yes no yes  yes yes no no 0.92¢ 3612.:

saolpuaddy ‘9



6. Appendices

Generalized Additive Model: large scale
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Figure A. 1: Large scale. General Additive Model (GAM) of temgteires' estimates depending on
the sample size, showing a stabilization of theapmter's estimates when the number of random
available points was 15.

Generalized Additive Model: small scale
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Figure A. 2: Small scale. General Additive Model (GAM) of temgkeires’ estimates depending on
the sample size, showing a stabilization of thepeter’'s estimates when the number of random
available points was 13.
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