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Identifying clusters 
Full name of method: PCA-based clustering 
Abbreviation: ./. 
Key references: Booth et al. (1994) 
Examples of implementation in ecology: ?? 
Brief description: In a first step, a principal component 
analysis is carried out (on the standardised predictors, 
i.e. using the correlation matrix). The loadings of each 
variable on each component are extracted. Starting with 
the first principal component, all variables loading on 
the same component with more than a pre-defined 
threshold are assigned to the same cluster. Hence, clus-
ter groupings are achieved in a forward fashion. Back-
ward PCA clustering starts with the least important PC, 
but derives more clusters and has a lower validation 
performance. 

Once clusters are identified, they have to be 
represented (our options “summarised”, “explained” and 
“centred”) and then submitted to a regression model 
(such as a GLM, but other model types are conceiva-
ble). 
Software used: R, with code written by CFD 
Settings: default loading threshold of 0.32 (equivalent 
to 10% explained variance: Tabachnick and Fidell 
1989) 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous only, normally/symmetric dis-
tributed (ideally multinormal) 
Response: Any type accepted by subsequent analysis 
(usually GLM). 
 
Full name of method: cluster analysis 
Abbreviation: ./. 
Key references: Evritt et al. (2001); Kaufman & 
Rousseeuw (2005) 
Examples of implementation in ecology: Pillar (1999) 
Brief description: There are many different ways to use 
cluster analysis to identify clusters. The partitioning of 
variables into clusters is based on their relative distances 
(according to Euclidean, Chi-square, Bray-Curtis, 
Spearman, Pearson, Hoeffding and many others distanc-
es) and on the partitioning algorithm (single, complete, 
average, Ward, k-means and others).  

Once clusters are identified, they have to be 
represented (our options “summarised”, “explained” and 
“centred”) and then submitted to a regression model 
(such as a GLM, but other model types are conceiva-
ble). 
Software used: R with libraries Hmisc, with wrapper 
code written by CFD, BL and GC 
Settings: We explored only two settings: Hoeffding-
Ward and Spearman-average linkage. Both are options 
offered by function varclus in Hmisc, with Hoeffing-
Ward as default. In either case, a threshold has to be set, 
at which level of similarity a cluster is partitioned off. 
For Hoeffding-Ward we used a threshold of 0, and for 
Spearman-average a value of 0.49 (this being based on a 
Spearman correlation between predictors of 0.7). 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 

Response: Any type accepted by subsequent analysis 
(usually GLM). 
 
Full name of method: iterative variance inflation factor 
analysis  
Abbreviation: iVIF 
Key references: Booth et al. (1994)  
Examples of implementation in ecology: -  
Brief description: The method works, essentially, by 
comparing the VIF values of a set of response variables 
with and without an additional response variable. All 
the variables that show an increase of the VIF value 
above a certain threshold and the newly added variable 
are grouped into one cluster (proxy-set in the terms of 
Booth et al. 1994).  

In a first phase, all variables are added step-
wise. If the introduction of a variable leads to a VIF 
value higher then a first threshold the variable stored in 
the proxy set of the collinear variable. Otherwise, the 
variable is added to a new proxy set. Only one repre-
sentative member of each proxy set is tested in the first 
phase. If more then one variable shows collinearity 
towards a newly introduced variable all variables are 
moved to the proxy set of the first collinear variable. In 
a second phase, all variables from the proxy set are 
added again to the set of currently tested variables. In-
creasing VIF values (tested by a second threshold) indi-
cated that the affected proxy sets have to be combined.  
The iterative formula should ensure that all variable 
combinations are tested. The method identifies different 
groups than a classification based on pair-wise VIF 
values because it also considers the VIF of groups of 
more than two variables.  
Software used: R with libraries car for calculation of 
VIF, code written by SL  
Settings: We explored two settings, the threshold during 
the first phase and the second threshold which is applied 
during the second phase during the reinvention of the 
variables. Booth et al. (1994) suggests a value of 1.5 for 
the first threshold but do not specify the second thresh-
old. In general, the lower the thresholds, the more varia-
bles will be grouped in proxy sets. Settings of 1.5 and 5 
seemed to be fine for most situations. The second 
threshold is not well defined from a theoretical basis.  

It is highly recommended to perform the IVIF 
only to a subset of variables which participate at least in 
on paired correlation coefficient greater then 0.5 or 0.7. 
Especially in situations there the correlated variables do 
not appear next to each other in the data frame, this pre-
processing steps leads to more reliable results.  
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: Any type accepted by subsequent analysis 
(usually GLM). 

Cluster-independent methods 
Full name of method: selection of uncorrelated varia-
bles 
Abbreviation: select07 (select04) 
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Key references: Green (1979); Fielding & Haworth 
(1995) 
Examples of implementation in ecology: Oppel et al. 
(2004); Pearce-Higgins & Yalden (2004); Hernandez et 
al. (2006) 
Brief description: Select07 is one of the most common-
ly used methods of removing collinearity from the input 
variable set. It returns a subset of the original predictor 
variables, only moderately correlated. Selection is based 
on a pairwise correlation matrix of the input variable 
set. From any two predictor variables exhibiting a corre-
lation greater than the ‘threshold value’ the less im-
portant predictor variable with respect to the response 
variable is removed. Importance is determined either 
through ecological reasoning or by the deviances of 
univariate regressions of the predictors against the re-
sponse variable. Five parameters need to be specified 
when using Select07 -threshold, method, sequence, 
family and univar. Fielding and Haworth (1995) rec-
ommend to use the threshold value |r|=0.7, although 
other, more conservative, threshold values have been 
suggested in the literature (cf. Capen et al. 1986). The 
correlation matrix can be calculated using either the 
Pearson’s product-moment coefficient (meth-
od=”pearson”) in case of bivariate normal distribu-
tions, or the non-parametric Spearman’s rank correla-
tion coefficient (method=”spearman”), the default, if 
no assumptions are made about the frequency distribu-
tion of the variables. sequence can be a vector specify-
ing the order of importance of the predictor variables 
obtained through ecological reasoning. If se-
quence=NULL (the default), the sequence of predictor 
variables is determined by their univariate importance 
for the response. In this case, family specifies the error 
distribution of the response variable, defaults to Gaussi-
an. Univariate importances are calculated either by 
GLMs (univar=”glm”), the default, or by GAMs 
(univar=”gam”).  
Collinearity method type: pre-analysis clean-up, re-
turning an orthogonalised data set (as does PCA) 
Software used: R, with code written by CFD, TM and 
DZ 
Settings: We chose Pearson correlation threshold of 0.7 
and 0.4, the first being commonly used, the second more 
restrictive. A threshold of 1 is equivalent to retaining all 
variables, i.e. use a GLM. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: Any type accepted by subsequent analysis 
(usually GLM). 
 
Full name of method: Sequential regression 
Abbreviation: ./. 
Alternative names: residual regression 
Key references: Graham (2003); Hastie et al. (2009, p. 
53) 
Examples of implementation in ecology: Graham 
(2003); Dormann et al. (2008a) 
Brief description: Sequential regression builds new, 
orthogonalised predictor variables by removing from 
each predictor the fraction of variation already ex-
plained by more important variables. The sequence of 

importance is of the original predictor variables deter-
mined either through ecological reasoning or by the 
deviances of univariate regressions on the response 
variable. The most important predictor variable is kept 
as the first predictor variable of the new predictor set. 
Subsequently, following the sequence of importance, for 
each original predictor variable its independent contri-
bution to the response is calculated by regressing it 
against all more important predictors of the new predic-
tor set and replacing it with the residuals from the re-
gression. The residuals from this regression form the 
corresponding predictor variables in the new predictor 
set. They are orthogonal, i.e. no longer statistically col-
linear, but conditional. Thus, they cannot be interpreted 
without the more important predictors. Likewise, step-
wise procedures for model simplification can not be 
applied to the new predictor variables. Three parameters 
need to be specified when using SeqReg: family, univar 
and sequence. family specifies the error distribution of 
the response variable, defaults to Gaussian. sequence 
can be a vector specifying a sequence of importance of 
the predictor variables based on ecological reasoning. If 
sequence=NULL (the default), the sequence of predictor 
variables is determined by their univariate importance 
for the response. In this case, two methods are available 
for calculating the univariate (=marginal) importance of 
the predictor variables for the response, GLM (uni-
var=”glm”), the default, and GAM (univar=”gam”). 

A stepwise model simplification is very com-
puter intensive, because after removing a variable, all 
variables of lower importance have to be re-calculated. 
The interpretation of variables changes from “there is a 
positive effect of precipitation” to “there is a precipita-
tion effect additional to the contribution it already made 
through its correlation with temperature”. Conceptually, 
sequential regression is related to semi-partial correla-
tion analysis (Bortz 1993) and path analysis, where also 
variables can act through correlation with other varia-
bles (Grace 2006). 
 To make predictions with the results of a sequen-
tial regression requires the similar processing of the data 
set onto which to predict. Thus, the sequence of varia-
bles from the original regression is passed onto the new 
data set, and this will then in turn be sequentially re-
gressed to yield a modified new data set of predictor 
variables. This is then used for prediction. 
Collinearity method type: pre-analysis clean-up, re-
turning an orthogonalised data set (as does PCA) 
Software used: R, code written by CFD and JG 
Settings: defaults  
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: Any distribution accepted by a GLM. 

Latent variable modelling 
Full name of method: Principal Component Regression 
Abbreviation: PCR 
Key references: Jackson (1991); Rawlings (1988) 
Examples of implementation in ecology: Riffell & 
Gutzwiller (2009) 
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Brief description: Principal Component Regression is 
an interconnection of Principal Component Analysis 
(PCA) and multiple linear regression.  

First, the principal components are calculated. 
We formalize this concept. The goal is: Find a set of 
weights w in order to create a linear combination of the 
columns of X , i.e. Xw=ξ , such that its variance is 
maximum. This goal can be attained by maximization 
with respect to w of XwXw TT  under the constraint 
that weight vector w is normalized. This problem leads 
to an eigenanalysis solution. Here, w is the first eigen-
vector of XX T . 

W is the matrix formed by all eigenvectors of 
XX T . Thus W is orthonormal. Furthermore, all com-

ponents iξ  are mutually orthogonal. Ξ  is the matrix 
formed by all these principal components. 

Second, the most important principal compo-
nents are used as regressors to fit the responses y by a 
multiple linear regression. This means, that the key 
point is to find m eigenvectors that can be used to calcu-
late principal components mm XW=Ξ  as an optimal 

set for regression εβ +Ξ= PCAmy   . Then, the OLS 
estimator is the solution of the minimization problem 

)ˆ()ŷ(y  min yyT −− . Therefore, OLS prediction for 

y is: yy T
mm

T
mm

m
PCR ΞΞΞΞ= −1)( ˆ . 

Software used: R with library stats, with wrapper code 
written by CFD 
Settings: The variables should be scaled in function 
prcomp. One parameter (number of principal compo-
nents) has to be specified when using PCR. In the wrap-
per code, the function step is used to select an optimal 
set of principal components by AIC. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  
Response: Any type accepted by subsequent analysis 
(usually GLM). 
 
Full name of method: Partial Least Square regression 
Abbreviation: PLS 
Key references: Jackson (1991); Martens & Naes 
(1989) 
Examples of implementation in ecology: Carrascal et 
al. (2009) 
Brief description: In PCA the first principal compo-
nents are appropriate variables to explain X. Nothing 
guarantees that these principal components are relevant 
for y. Partial Least Squares (PLS) regression attempts to 
set up a model using both the predictors X and the re-
sponses y. Therefore, PLS regression generalises PCA 
and combines it with a multiple linear regression. PLS 
regression is an iterative procedure. 

We now formalize this concept. The goal is: 
Find a set of weights w in order to create a linear com-
bination of the columns of X , i.e. Xwt = , such that 
their covariance to y is maximum. 
This goal can be attained by maximization with respect 
to w of XwyyXw TTT  under the constraints that 

weight vector w is normalized and the matrix 
),,( 21 …ttT =  is orthogonal. This problem leads to 

an eigenanalysis solution. The vector w is the first ei-
genvector of XyyX TT . Furthermore, a deflation of X 

ensures that a given component it  is orthogonal to all 

others. That is, when the first vector 1t  is found, its 
projection onto X is subtracted from X. Then, the proce-
dure is re-iterated until X becomes a null matrix. 

For regression the first m vectors of the so-
called latent variables: ),,,( 21 mtttT …=  are used as 
an optimal set. Therefore, OLS prediction for y 

is: yTTTTy T
mm

T
mm

m
PLS

1)( ˆ −= . 
Software used: R with libraries ppls and gpls, with 
wrapper code written by GC and CFD 
Settings: One parameter (number of latent variables) 
has to be specified when using PLS. 
The wrapper code calculates AIC for all fits and finds 
the most parsimonious model, i.e. the appropriate num-
ber of latent variables m. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  
Response: Gaussian or binomial 
 
Full name of method: Penalized Partial Least Squares 
Abbreviation: PPLS 
Key references: Krämer et al. (2007) 
Examples of implementation in ecology: ? 
Brief description: PCR, PLS, LRR and CPCA have in 
common that their second step is a linear regression, i.e. 
they are linear approaches. Nonlinear regressions may 
be fitted by use of additive regression models where the 
linear predictor is substituted by a user specified sum of 
smooth functions.  

Here penalized regression splines are a preva-
lently used tool. Splines are piecewise polynomial func-
tions. Their links are called knots.  

The main idea of Penalized PLS is to use such 
nonlinear splines transformation )(XZ BΦ= as a 
preliminary step followed by the linear PLS approach. 
For performing this transformation, B-splines are used 
as a set of basis functions. If X has dimensions pn× , 
then Z has dimensions pKn× , where K depends on 
the order of splines and the number of knots. 

One has to take into account that the OLS 
method of regression by minimization with respect to 
β  of )()( ββ ZyZy T −−  possibly leads to overfit-
ting because of the high-dimensional matrix of predic-
tors Z. Here, the number of variables is generally larger 
than the available observations. In order to tackle this 
problem, the principle of penalization (e.g., see ridge 
regression) is adapted for PPLS. Therefore, the OLS 
method is substituted by minimization with respect to 
β  of ββββ PZyZy TT +−− )()( , where P is a 
penalty matrix. 

In summary, penalized PLS means that PLS is 
performed on the transformed matrix Z and the PLS 
regression is performed with penalty matrix P. 
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Software used: R with library ppls, with wrapper codes 
written by GC and CFD 
Settings: Three parameters (the number of latent varia-
bles, the number of knots, and a parameter for the penal-
ty matrix) have to be specified when using PPLS. The 
wrapper code includes a helper function for the optimi-
zation of the number of knots and the parameter for the 
penalty matrix. Moreover, this code calculates AIC for 
all fits and finds the most parsimonious model, i.e. the 
appropriate number of latent variables m. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  
Response: Gaussian 
 
Full name of method: Constrained Principle Compo-
nent Analysis 
Abbreviation: CPCA 
Key references: Vigneau et al. (2002) 
Examples of implementation in ecology: ? 
Brief description: The main improvement of PLS ver-
sus PCR is that the variance of X is substituted by the 
covariance of X and y. This concept should confirm that 
the chosen latent variables are relevant not only for X, 
but also for y. Regression models through Constrained 
Principal Components Analysis similarly attempt to 
create latent variables using both the predictors X and 
the response y . In contrast to PLS, however, CPCA is a 
straightforward model, i.e. it is non-iterative. Further-
more, a tuning parameterα is introduced in CPCA.  

We now formalize this concept. The goal is: 
Find a set of weights l in order to create a linear combi-
nation of the columns of X, i.e. Xlz = , such that it 
provides the best prediction of matrix 

[ ]XyA )1(| αα −= . Its OLS estimator is the solu-
tion of the minimization problem 

)ˆ()ˆ( min AAAA T −− . This goal can be attained by 
maximization with respect to U of 

)( 2/12/1 UVVVVUtrace XAXXAX
T −−  under the con-

straint that matrix U is orthonormal, where 
XAVAXVXXV T

AX
T

XA
T

X ===     ,   , . This 
problem leads to an eigenanalysis solution:  
U is the matrix formed by the eigenvectors of 

.2/12/1 −−
XAXXAX VVVV  

For regression the first m eigenvectors 

mXmm UXVXLZ 2/1−==  are used as an optimal set. 
Therefore, OLS prediction for y is: 

yZZZZy T
mm

T
mm

m
CPCA

1)( ˆ −= . 
Software used: R code written by GC and wrapper 
code written by CFD 
Settings: Two parameters (number of latent variables, 
tuning parameter) have to be specified when using 
CPCA. The wrapper code calculates AIC for all fits and 
finds the most parsimonious model, i.e. the appropriate 
number of latent variables m. Systematic evaluation of 
critical parameter value for the tuning parameter yields 
the rule of thumb: alpha=0.1 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  

Response: Gaussian 
 
Full name of method: Latent root regression 
Abbreviation: LLR 
Key references: Vigneau & Qannari (2002) 
Examples of implementation in ecology: ? 
Brief description: The main improvement of PLS ver-
sus PCR is that the variance of X is substituted by the 
covariance of X and y. This concept should confirm that 
the chosen latent variables are relevant not only for X, 
but also for y. Latent root regression similarly attempt to 
create latent variables using both the predictors X and 
the responses y. 

For this purpose we define a matrix B as fol-
lows: [ ]Ξ= |yB , where Ξ is the matrix of principal 
components associated with X (see PCR). LRR is based 
on a discussion of the relevance (i.e. predictive value for 
y) of principal components associated with B. By means 
of a deflation procedure like in PLS, it is possible to 
stepwisely select latent variables. This iterative proce-
dure adopts some matrix properties of B and Ξ  and 
therefore circumvents a detailed investigation regarding 
predictive value.  
Software used: R code written by GC, PJL, and CFD 
Settings: One parameter (number of latent variables) 
has to be specified when using LRR. The function step 
is used to select an optimal number by AIC. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  
Response: Gaussian 
 
Full name of method: Dimension reduction regression 
Abbreviation: DR 
Alternative names: Sliced inverse regression (SIR) 
Key references: Cook & Weisberg (1999); Weisberg 
(2008) 
Examples of implementation in ecology: ./. 
Brief description: DR is a set of dimension reduction 
techniques in which the minimum underlying subspace 
of the data is to be estimated by kernel approaches. 
Different objective functions and kernel approaches are 
implemented (Weisberg 2008). 
Software used: R, with the library dr and additional 
code by BR and BS 
Settings: slice.function=dr.slices.arc, 
nslices=8, chi2approx="wood", method="sir" 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical (only for some 
methods within dr) 
Response: any distribution accepted by a GLM 

Tolerant methods 
Full name of method: Ridge regression 
Abbreviation: ridge 
Alternative names: ./. 
Key references: Hoerl & Kennard (1970) 
Examples of implementation in ecology: Reineking & 
Schröder (2006) 
Brief description: Ridge regression is a penalized re-
gression method – other examples are LASSO or OS-
CAR. Penalized regression methods aim at improving 
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ordinary least squares (OLS) estimates in regard to the 
accuracy of the model and the interpretability of the 
model. This is achieved by adding a penalization term to 
the model, which penalizes large coefficients. Model 
selection favours models with smaller coefficients if 
these can achieve a similar quality of the fit than models 
with larger coefficients. Ridge regression puts a penalty 
in form of the L2-norm of the regression coefficients 

jβ̂  to the OLS estimation:  

2
2

2
2 ||Xy),( βλββλ +−=L  

∑
=

=
p

j
j

1

22|| ββ  

2Xyminargˆ ββ
β

−= , subject to ∑
=

≤
p

j
j t

1

2β  

Before model is fitted, the response is centred and the 
predictors are standardized. The choice of tuning pa-
rameters λ is typically achieved by cross-validation. The 
use of the L2 norm leads to a shrinkage of the coeffi-
cients towards zero. This shrinkage leads to an addition-
al estimation bias but on the other hand results in a 
smaller prediction error due to increased variance 
(Hastie et al. 2009). 
 The effective degrees of freedom for the ridge 
regression can be calculated by: 

∑
=

−

+
=+=

p

j j

jTT

d
d

XIXXXtrdf
1

2

2
1 ))(()(

λ
λλ

 (Hastie 

et al. 2009), with dj being the jth element of the diagonal 
matrix of the singular value decomposition of the cen-
tred input matrix X. 
Software used: R, together with the library penalized 
Settings: minlambda1=0, maxlambda1=100, fold=10, 
standardize=TRUE 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: any distribution accepted by a GLM 
 
Full name of method: LASSO 
Abbreviation: ./. 
Alternative names: ./. 
Key references: Tibshirani (1996) 
Examples of implementation in ecology: Reineking & 
Schröder (2006) 
Brief description: LASSO is a penalized regression 
method (see ridge regression above). The penalization 
term added to the OLS model is the L1 norm: 

11
2

1 ||Xy),( βλββλ +−=L  

∑
=

=
p

j
j

1
1 |||| ββ  

which is equivalent to the optimization problem: 
2Xyminargˆ ββ

β
−= , subject to ∑

=

≤
p

j
j t

1
|| β  

Before model is fitted, the response is centred and the 
predictors are standardized. The choice of tuning pa-
rameters is done typically done by cross-validation. The 
use of the L1 norm leads in addition to the shrinkage of 

the model coefficients towards zero to a selection pro-
cess between the explanatory variables. For the lasso the 
number of non-zero coefficients is a valid estimator for 
the degrees of freedom of the model (Zou and Hastie 
2005). 
Software used: R, with the library penalized 
Settings: minlambda1=1e-8, maxlambda1=100, 
fold=10, standardize=TRUE 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: any distribution accepted by a GLM 
 
Full name of method: octagonal shrinkage and cluster-
ing algorithm for regression 
Abbreviation: OSCAR 
Alternative names: ./. 
Key references: Bondell & Reich (2007) 
Examples of implementation in ecology: - 
Brief description: The OSCAR uses the the L1-norm 

together with the pair-wise L∞ -norm on jβ̂  as penali-
zation terms: 

!
"

#
$
%

&
++−= ∑

<kj
kjcL |}||,max{|||Xy),( 2

βββλββλ

 
which becomes for ordered βj (|β1|≤ |β1|≤ … |βp|) 

!
"

#
$
%

&
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=

||)1)1((Xy),(
1

2
p

j
jjcL βλββλ  

which is equivalent to (1 - c) L1 + c (pairwise L∞) ≤ t, 
and which is equivalent to the optimization problem: 

2Xyminargˆ ββ
β

−= , subject to 

tcc
kj

kj ≤+− ∑
<

|}||,max{|||)1( 1 βββ  

Before the model is fitted, the response is centred and 
the predictors are standardized. The choice of tuning 
parameters is typically achieved by cross-validation. 
Since both terms have to be optimized in parallel and 
since the calculations involved are computational in-
tense using the standard Matlab solver the model fitting 
procedure is time consuming. Upcoming developments 
might improve this (Bondell and Reich 2007). The use 
of the L1-norm leads, in addition to the shrinkage of the 
model coefficients towards zero, to a selection process 
among the explanatory variables. By use of the pair-
wise L∞ -norm the OSCAR encourages both sparsity 
and equality of coefficients (for standardized predic-
tors). Sparsity leads to grouping of highly correlated 
predictors and performs thereby an additional clustering 
of the predictor variables. For the OSCAR estimate of 
the degrees of freedom for the OSCAR is the number of 

distinct nonzero values of {| 1β̂ |, . . . , | pβ̂ |} (Bondell 
and Reich 2007). 
Software used: R, Matlab code from (Bondell and 
Reich 2007), code to call compiled Matlab executable 
and model selection by SL 
Settings: defaults 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous  
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Response: Gaussian, an extension towards the distribu-
tions accepted by a GLM is planed (Bondell and Reich 
2007). 
 
Full name of method: Boosted Regression Trees 
Abbreviation: BRT 
Alternative names: stochastic gradient boosting 
Key references: Friedman (2000); Schapire (2002); 
Elith et al. (2008) 
Examples of implementation in ecology: Leathwick et 
al. (2006a); Elith & Leathwick (2007) 
Brief description: Boosted regression trees combine 
two algorithms: “boosting” is a method for developing 
multiple models and combining them; “regression trees” 
are single models that partition the predictor space into 
disjoint regions and predict a separate constant value in 
each of them (Friedman and Meulman 2003). The 
boosting algorithm calls the regression tree algorithm 
repeatedly, each time giving it a re-weighted version of 
the data that emphasizes the records that were misclassi-
fied in the last round. Finally the suite of trees is com-
bined by weighted averaging (Schapire 2003). Statisti-
cians have reinterpreted it as a method for developing a 
regression model in a forward stage-wise fashion, add-
ing small modifications across the model space (via 
trees) to fit the data better (Hastie et al. 2009). The final 
model has numerous terms, each term being a regres-
sion tree. As boosting proceeds, the model complexity 
increases until eventually it over-fits the data. In the 
gradient boosted methods (Friedman 2002) the aim is to 
maximize the log-likelihood, and updates are based on 
its gradient. The number of trees in the boosted model is 
a natural measure of complexity, and is chosen by 
measuring prediction accuracy on independent data 
(cross-validation). This identifies the most complex 
model that still predicts well, and is based on the trade-
off between training error and generalization error. The 
two main parameters to be set are the shrinkage parame-
ter (learning rate), which controls the amount of re-
weighting at each step, and the size of each tree – one 
partition (an additive model) or two or more splits. BRT 
is implemented in gbm (see below) for several response 
types, including binomial families. 
Software used: R with library gbm; extra code written 
by JE and John Leathwick 
Settings: defaults, but learning.rate = 0.01, 
tree.complexity = 5 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: binary/multinomial (classification) or con-
tinuous (regression; Gaussian or Poisson). 
 
Full name of method: randomForest 
Abbreviation: ./. 
Alternative names: ./. 
Key references: Breiman (2001) 
Examples of implementation in ecology: Cutler et al. 
(2007) 
Brief description: randomForest is a machine-learning 
algorithm building on repeated construction of classifi-
cation and regression trees based on randomly drawn 
variables and samples (Breiman 2001). Each tree is then 
validated on the cases withheld from fitting (out-of-bag 

validation). M trees are “grown” and all are used for 
prediction, weighted by their validation performance. 
randomForest is fast, robust and easy to employ. Three 
parameters have to be specified when using random-
Forest: mtry (“Number of variables randomly sampled 
as candidates at each split. Default values are different 
for classification (sqrt(p), where p is number of varia-
bles) and regression (p/3)”, citing the function’s help-
page in R. However, for the simulated data used here, 
more tries yielded better predictions, usually levelling 
off at p/2, but still being best at p.); ntree (number of 
trees to grow; defaults to 500, which also pre-trials 
confirmed to be a good value); and nodesize (minimum 
size of terminal nodes; the larger this value, the shorter 
the trees; defaults of 1 and 5 (for classification and 
regression, respectively) did not yield the best predic-
tions in our pre-trials, rather, 1, 2, 4 and 7 performed 
best). 
Collinearity method type: robust (i.e. does not make 
specific adjustments for collinearity of predictors) 
Software used: R, with library randomForest 
Settings: defaults, but mtry=20 and ntree=1000 (We ran 
several trials on the same data before the study, with 
“test same” as test data set, to find the best settings for 
mtry and ntree. The outcome wea not particularly clear 
for ntree, but larger values of mtry led to better fits on 
the test data. The chosen values for mtry are rather high 
and may contribute to the overfitting we detect in the 
study for altered collinearity structure.) 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: normal (regression), categorical (classifica-
tion) 
 
Full name of method: Support Vector Machines 
Abbreviation: SVM 
Alternative names: ./. 
Key references: Vapnik (1996); Burgess (1998); Hastie 
et al. (2009); Steinwart & Christmann (2008) 
Examples of implementation in ecology: Guo et al. 
(2005); Ribeiro & Torgo (2008) 
Brief description: Support Vector Machines were ini-
tially conceived as multi-dimensional classifiers. They 
separate samples in n-dimensional space by finding a 
“hyperplane” that separates the different classes in such 
a way as to maximise the distance between the nearest 
points of different classes. To do so, the model starts 
with a linear separation and then uses kernels to in-
crease the complexity of the separator. The points that 
form the border of a class are called “support vectors”, 
hence the name. One key feature in this method is that 
any point beyond the class boundary is irrelevant for the 
calculations. Since SVM find the optimum separation 
planes iteratively, at some point during the model build-
ing every data point has been used. 
In support vector regression, a distance-dependent loss 
function (Gaussian, Huber, Laplace or other) replaces 
the separation line and weights the contribution of each 
data point. The ε-insensitive loss function actually de-
fines a region of size ε where data points are ignored, 
corresponding to the “already perfectly classified data” 
in the classification model. In ν (“nu”)-regression, the 
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parameter ν controls the “data-ignoring width” ε and 
can be optimised (Schölkopf and Smola 2000). 
Collinearity method type: robust (i.e. does not make 
specific adjustments for collinearity of predictors) 
Software used: R, with library e1071 
Settings: defaults but with type=”nu-regression”. 
Default settings include scaling of the variables and the 
use of the radial basis kernel. 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: normal (regression), categorical (classifica-
tion) 
 
Full name of method: Multivariate Adaptive Regres-
sion Splines 
Abbreviation: MARS 
Alternative names: earth (for MARS being a registered 
acronym) 
Implementation in this study: single species models 
Key references: Friedman (1991); Hastie et al. (2009) 
Examples of implementation in ecology: (Moisen and 
Frescino 2002, Yen et al. 2004), (Leathwick et al. 
2006b) (Elith and Leathwick 2007, Heinänen and 
Numers 2009) 
Brief description: MARS is a hybrid between conven-
tional regression and recursive partitioning methods. 
MARS uses piece-wise linear basis functions to define 
the modelled relationship. Basis functions are defined in 
pairs, using a knot to define inflection points, and coef-
ficients to quantify the slopes of the non-zero sections. 
More than one knot (i.e. more than one pair of basis 
functions) can be specified for a predictor variable, 
allowing complex non-linear relationships to be fitted. 
When fitting a MARS model, knots are chosen in a 
forward stepwise procedure. Candidate knots can be 
placed at any position within the range of each predictor 
variable to define a pair of basis functions. At each step, 
the model selects the knot and its corresponding pair of 
basis functions that give the greatest decrease in the 
residual sum of squares. Knot selection proceeds until 
some maximum model size is reached, after which a 
backwards-pruning procedure is applied and those basis 
functions that contribute least to model fit are progres-
sively removed. At this stage, a predictor variable can 
be dropped from the model completely if none of its 
basis functions contribute meaningfully to predictive 
performance. The sequence of models generated from 
this process is then evaluated using generalized cross-
validation, and the model with the best predictive fit is 
selected. Interactions between variables can be fitted, 
but rather than fitting a global interaction between a pair 
of variables, these are specified for only part of the 
environmental range using basis functions. The current 
implementation of MARS in R uses least squares fitting 
appropriate for data with normally distributed errors. 
Collinearity method type: robust (i.e. does not make 
specific adjustments for collinearity of predictors) 
Software used: R, with library mda; additional code 
written by J. Leathwick and J. Elith 
Settings: defaults  
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 

Response: Any distribution accepted by a GLM. 
 
Full name of method: collinearity-weighted regression 
Abbreviation: CWR 
Alternative names: ./. 
Key references: (this is a new methods, described here 
for the first time) 
Examples of implementation in ecology: ./. 
Brief description: Collinearity may be caused by some 
few data points (e.g. outliers). Reducing their im-
portance in the regression will also yield parameter 
estimators less affected by collinearity. Following this 
line of argument, CWR calculates a vector of weights 
that reduces the influence of data points causing colline-
arity. These weights can be passed on to a GLM model. 
For calculation of weights, each data point is omitted in 
turn from the regression, and then the maximum condi-
tion index for the model is calculated. Maximum CI 
values are then taken to the power of log(N) (to give 
small changes less importance in small data sets than in 
large data sets) and assigned as preliminary weights to 
the data point omitted. Finally, these preliminary 
weights are divided by the mean of preliminary weights 
of all points and assigned as weights to be used in the 
further analysis. 
Collinearity method type: incorporate collinearity 
(GLM with specific collinearity adjustment) 
Software used: R, with code written by TM, BR and 
CFD (giveWeightsVif) 
Settings: defaults 
Specifics of data manipulations for modelling: ./. 
Predictors: continuous and categorical 
Response: any distribution accepted by a GLM 
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Appendix A2: Comparison of 
methods 

Simulated data 

Details on data simulation 

Collinear data creation!
All data sets consisted of 1000 data points and 21 ex-
planatory variables (predictors). Predictors were 
grouped into four clusters of five variables, plus a 
single, uncorrelated variable, and collinearity was 
restricted to within clusters. To achieve collinearity, 
one predictor within a cluster was drawn from a uni-
form distribution between 0 and 1. The second variable 
in the cluster was simply the first with a random nor-
mal noise (mean = 0) added to it, with the standard 
deviation of the normal noise determined by a free 
parameter called “decay”. The third variable of the 
cluster was analogously derived from the second, and 
so forth. The parameter “decay” hence determined how 
fast the collinearity decreases from the first to the fifth 
predictor in a set: high decay means low collinearity. 
The 21st predictor was always created as uncorrelated 
with all others. All X were then standardised. 

Simulation analysis!
For all methods dealing with collinearity before the 
analysis and hence creating a new data set (e.g. se-
lect07, clustering methods, some latent variable meth-
ods, see supplementary material for details of each 
method), we used a linear model with Gaussian errors, 
linear and quadratic terms, interactions and stepwise 
model simplification to analyse the data (from here on 
referred to as GLM). Many analyses used an infor-
mation-theoretic threshold for selecting the final model 
(either for deciding on the number of components or 
for stepwise model selection; see Table C1 in supple-
mentary material). The most common approach was to 
use (possibly small-sample size-corrected) Akaike’s 
Information Criterion (AICc, Burnham and Anderson 
2002), although the AIC has been criticised as being 
asymptotically biased (e.g. Link and Barker 2006). We 
therefore used both AICc and the Bayesian Infor-
mation Criterion (BICc) for model selection, the latter 
resulting usually in more parsimonious models. 
 Several collinearity approaches required the 
specification of parameters (such as constraints, 
weights, penalties and so forth). These were optimised 
for each data set using only the training data. Selecting 
the best model through parameter tuning and model 
selection led to a considerable computational burden. 
The analysis of a single data set on a standard desktop 
computer took seven hours, or 28 000 hours for all data 
sets. 
 Latent variable regression models are common-
ly carried out without consideration of non-linear rela-

tionships or interactions between latent variables. Alt-
hough this could easily be incorporated in the analysis, 
we have not found any study that actually did so. We 
did use linear and quadratic combinations of latent 
variables in their linear models, because a pre-analysis 
showed linear combinations to be highly inadequate. 
We did not, however, use interactions between latent 
variables. This may lead to a slight reduction in per-
formance compared to more completely defined GLMs 
and the like. 

Pre-analysis: AIC vs. BIC 
Across all methods, BIC-derived models were consist-
ently more accurate in predicting test data (i.e. RMSE-
difference between AIC and BIC is positive, indicating 
higher errors in the AIC-based predictions: Fig. A1). 
However, variation was huge and dependent on both 
the type of test data and the method. For some meth-
ods, the difference between AIC- and BIC-derived 
models was negligible (all clustering methods, PCR 
and DR), and for CPCA, PLS and PPLS AIC-derived 
models were slightly better than BIC-derived. For all 
other methods, BIC yielded higher correlation coeffi-
cients between predictions and test data. The difference 
between training fit and test fit was particularly large 
for GLM, seqreg and CWR when using AIC, indicat-
ing substantial overfitting (Fig. A2). The BIC-versions 
of these approaches, in contrast, show virtually no 
overfitting. 
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Fig. A1. Difference in Root Mean Square Error of AIC- and BIC-
derived models, averaged across all 23 methods. Positive values indi-
cate overfitting by AIC-derived models. Data points outside 1.5 x 
interquartile range omitted for clarity. 
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Fig. A2. Relative performance of AIC- and BIC-based 
model selection for all approaches (as measured by Root 
Mean Squared Error). Positive values indicate better perfor-
mance of BIC (lower error on validation data). Note change 
in scale of y-axis. While overall BIC is superior, differences 
are small except for GLM, CWR, seqreg and PCR. 
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Pre-analysis: dealing with clusters 
Each of the four ways to identify clusters (PCA, cluster-
ing based on Hoeffding-Ward, clustering based on 
Spearman-average and iVIF) was combined with three 
methods to extract a new representative variable for a 
cluster (central variable, first PC of cluster members, 
variable which best explains the response; Fig. A3). All 
clustering methods were rather similar in fit and predic-
tion, although Spearman-average and iVIF tended to 
fare slightly better. While choosing the variable with 
the highest univariate correlation with the response 
(“expl”) tended to be the best way to process clusters, it 
also is statistically least sound (sometimes referred to as 
“data snooping”, because the response variable is exam-
ined during data reduction: Harrell 2001, p. 160). Using 
the central variable (which has the highest correlation 
with all other variables in the cluster) generally per-

formed better than using the cluster’s first PC (Fig. A3). 

Method comparison across simu-
lations – alternative measures of 
performance 
In addition to the RMSE presented in the main text, we 
also analysed R2, slope and intercept of the calibration 
curve. The results for these indices are given here, for 
test same and none only. 
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Fig. A4. Values are scaled such that the true model (ML true) 
has an R2 of 1. Compare to sequence in Fig. 5 (main text).  
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Fig. A5. The correct value for the calibration slope is 1. A 
value of 0 indicates a horizontal line, i.e. no correlation be-
tween observed and predicted values. Note that only ridge and 
randomForest yield slopes steeper than 1. Compare to se-
quence in Fig. 5 (main text). 
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Fig. A3. Root mean square error of model predictions for training 
and test data sets. The four clustering methods (left to right in 
each group: PCA, clustering based on Hoeffding-Ward, cluster-
ing based on Spearman-average and iVIF), cluster processing 
methods are abbreviated as cent=central variable; sum=first PC 
of cluster members; and expl=variable explaining response best. 
Grey line is mean value for data set. Data points outside 1.5 x 
interquartile range omitted for clarity. 
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Intercept 

Case studies 
To see how the different methods behave under real 
world conditions, we applied a subset of the most prom-
ising methods to three case studies. These case studies 
serve to illustrate the different ecological conclusions 
that different approaches suggest.  

Case study 1: Two simulated data 
sets 
As an example for the effects of collinearity on model 
selection we used two data sets of the simulations. One 
data set shows severe collinearity while the other has 
been constructed under mild collinearity. For both data 
sets, model fit was high: all methods explained between 
89 and 91 percent of the variance. But increasing col-
linearity led to problems for the identification of the 
right model structure for most methods (cf. Fig. A7). 
While most methods performed well under mild collin-
earity, only select07 and sequential regression were 
able to identify the correct model structure under severe 
collinearity. Notice that both methods use data snoop-
ing. GAMs did place too much importance on X21, 
while both GLM and the Hoeffding/Ward cluster ap-
proach focused on X1 instead of X5. Machine learning 
approaches, PLS and DR incorrectly distributed the 

importance over many predictors. MARS worked well 
in general but erroneously took X2 into the model in 
both cases. 

Case study 2: Occurrence pattern of 
Black Grouse (Tetrao tetrix) in Eu-
rope 
In this case study, we explored the relationship between 
European Black Grouse (Tetrao tetrix) distribution and 
observed climate (Fig. A8). Georeferenced species 
records were obtained from GBIF Data Portal 
(www.data.gbif.org, accessed 2011-02-02) and then 
aggregated to 2.5’ resolution, resulting in a total of 
12445 occurrence records. The same number of random 
absences was drawn from the background, restricted to 
Europe. Bioclimatic variables for current climate were 
complied from the WorldClim database at 2.5’ resolu-
tion (Hijmans et al. 2005). For our analysis, we created 
random subsets of 5000 presence-absence records for 
model training and 5000 records for independent evalu-
ation. Prior to analysis all predictor variables were 
standardised. Pairwise correlations between the 19 
predictors were as high as |r|=0.95 (Fig. A9). Bio7 is 
defined through a linear combination of other variables 
and was hence omitted from subsequent analysis.   

 

 
Fig. A7. Relative importance plots for simulated data. The upper 
part shows the relative importance of the variables for mild colline-
arity (decay = 8), while the lower part shows the relative importance 
for severe collinearity (decay = 3). The true functional relationship 
is: y = 25 + X5 + X21 + X5

2 + X21
2 + X5 *X21 (function 5). To com-

pare the importance each method assigns to different explanatory 
variables we estimated the relative importance of each variable. 
Depending on the method, the Sum of Squares, deviance (seqreg), 
F-value (GAM), relative importance (BRT) or a factor calculated 
from the loadings and the coefficients (PLS) was used as an im-
portance measure. 
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Fig. A6. The correct value for the calibration intercept is 0. 
Note that only ridge and randomForest yield intercepts less 
than 0, thereby correcting for the too steep slopes (Fig. A5). 
Intercepts larger than 0 indicate systematic under-prediction. 
Compare to sequence in Fig. 5 (main text). 
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Model performance was evaluated against independent 
test data in terms of explanatory power (explained devi-
ance R2, Menard 2000) and in terms of discriminatory 

power (AUC, area under the ROC curve, Fielding and 
Bell 1997). Most methods achieved excellent AUC 
scores (>0.9, Hosmer and Lemeshow 2000) and reason-
able goodness of fit values R2 between 0.50 and 0.70. 
RandomForest performed best according to both 
measures, followed by BRT and GAM (Fig. A10). 
Select07 achieved slightly lower accuracy values than 
the other methods (AUC=0.87, R2=0.42), iVIF-based 
clustering performed worst (AUC=0.75, R2=0.20).  
By and large, variable importance was concordant be-
tween methods. Temperature related variables (bio1 – 
bio11) generally were deemed more important for 
Black Grouse occurrence than precipitation (bio12 - 
bio19; Fig. A10). Also, annual trends in temperature 
(bio1) and limiting temperatures (e.g. mean temperature 
of warmest quarter, bio10) were identified as more 
important than temperature seasonality (e.g. bio4). The 
clustering methods (Hoeffding-Ward and iVIF-based) 
and Select07 selected distinctly different variables than 
the rest of the methods as they aimed to find representa-
tive subsets of predictors. Thereby, iVIF-based cluster-
ing yielded ecologically implausible clusters while 

Hoeffding-Ward selected plausible clusters. Several 
regression-based methods (GLM, GAM, Ridge, PLS, 
MARS) estimated ecologically implausible relation-

ships for some, generally less important pre-
dictors (e.g. bimodal response for bio6, min-
imum temperature of coldest month).  
 Overall, the methods compared pro-
vided a consistent picture of relative climate 
effects on Black Grouse occurrence in Eu-
rope. More flexible model types such as ran-
domForests or BRTs performed best, alt-
hough differences to classical methods were 
not very pronounced. However, when using 
species distribution models as predictive tool 
we need to be aware that high performance 
scores under current climate do not guarantee 
robustness under changing environmental 
conditions (Elith et al. 2010). Rather, this 
analysis underscores the need to scrutinize 
model plausibility. 

Case study 3: Drivers of global bird 
diversity 
This analysis used data on climate, terrain, land use and 
protected areas as well as economic and political indi-
cators to analyse (normally distributed) global bird 
diversity (species density per km2) at the country level 
for 224 countries (cf. Fig.s B11 and B12). Species-
richness area-effects were corrected for by calculating 
the bird species density, i.e. residuals of a linear regres-
sion1 of log-log transformed bird species richness and 
country area (yielding bird species/km2). This correc-
tion ensured that the trivial effect of country size did 
not obscure the effects of other predictors. The species-
                                                             
1 The assumption of normality has been tested based on 
graphical procedures and statistical test. 

 

Fig. A8. Scatterplots of Black Grouse occurrence against each predictor. 
Lines are locally weighted smoothers. 

 

Fig. A9. PCA of predictors for Black Grouse.  

 
Fig. A10. Relative importance plot for Black Grouse case study. For clus-
tering methods similar letters indicate that predictors belong to the same 
cluster. Methods are ranked according to the explained deviance. Predictor 
variables are ranked according to their mean rank assigned by all methods. 
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area-relationship explained 60% of the variance in the 

original data. Missing data points for explanatory varia-
bles were imputed based on all other predictors (Harrell 
2001, p. 47). Explanatory variables were Box-Cox-
transformed to reduce effects of skewed predictors and 
then standardised to combat trivial forms of collinearity 
(Quinn and Keough 2002, p. 131).  
Variable names refer to temperature seasonality 
(temp_sea), proportion urban area, mean annual tem-
perature (temp_y), percent forest, industrial gross do-
mestic product (GDP_in), precipitation seasonality 
(prc_sea), area number of protected sites according to 
IUCN (IU_area), elevation (elev), annual precipitation 
(prc_sea and prc_y, respectively), percent arable land 
(arbl), GDP per person (GDP_ppp), percent shrubland 
(shrub), agricultural contribution to the GDP (GDP_ag), 
human development index according to the World Bank 
(HDI) and the average inclination of the country 
(slope). 
 Most methods achieved a reasonable goodness 

of fit with the best approaches yielding an R2 of 0.59 
(seqreg) and 0.50 (select07), going down to 
values below 0.30 (for ridge, cluster and 
randomForest).  
There was no strong pattern in which varia-
bles were selected by the approaches. Urban 
area was the only variable included in all 
models, coming out second after temperature 
seasonality overall (Fig. A13). Several points 
are worth noting, however. Firstly, most 
methods kept many variables in the model, 
even though these had little to contribute 
(relative partial R2-values of less than 0.1, 
noticeable as light blue in Fig. A13). As flip-
side of this finding, only a few models clearly 
identified one or two variables as supremely 
important (values > 0.25: temperature sea-
sonality by seqreg, select07, BRT and GLM; 
urban by cluster; voice/accountability by 
MARS; industrial GDP by GLM; governmen-
tal efficiency and political stability by DR). 
Secondly, it is ecologically implausible that 
GDP and the socio-political situation are 
causally related to bird species density in this 

data set. Still, these variables were selected repeatedly 
and by very different approaches. In the extreme, DR 
selected virtually only socio-political variables, while 
even the ecology-dominated seqreg model included 
voice/accountability. Thirdly, human-influenced plau-
sible predictors were assigned weight very irregularly. 
The amount of urban area as well as the number and 
area of nature reserves shows up as relevant in some 
models, but not in others. Urban area can have both 
positive and negative effects on species density. Dense-
ly populated countries often have a higher density of 
species records, thereby increasing the apparent species 
richness in the data. At the same time, landscapes are 
usually more transformed there and hence habitats 
degraded, leading to lower population sizes and detec-
tion of bird species. 
 Overall, this analysis does not offer a consistent 
explanation for the observed global birds species densi-
ty. Variables are too confounded to unambiguously 
evaluate the effect of temperature seasonality or nature 
reserves. 

Discussion 
Our case studies were meant to illustrate the application 
of collinearity methods to real data sets. The problems 
we confront with real data, compared to our simulated 
data, are manifold: small sample size, extremely heter-
ogeneous collinearities, categorical variables, non-
normal response variables (case study 2), highly-
skewed predictors and many more.  
 Case study 1, which looked at two of our 4000 
simulated data sets, showed that some methods are 
substantially affected by high collinearity. In particular 
latent variable methods (PLS, DR), randomForest, BRT 
and ridge were unable to attribute effects correctly to 
predictors 5 and 21. These methods smeared the effect 
out over all (several: BRT) variables (although quanti-

 
Fig. A11. Scatterplots for the corrected diversity of birds and the 15 most im-
portant predictors as selected by random forest. Lowess smoothers have been 
added to aid interpretation. The y-axis is log-transformed. 
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Fig. A12. PCA of predictors for bird diversity. See caption Fig. 
A5 for names of variables. 
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fication of variable importance is no exact science and 
alternative approaches to do so may paint a slightly 
different picture). 
In case study 2, Black Grouse distribution in Europe, 
we observed three types of variables: those selected by 
several approaches, those selected by only one ap-
proach, and finally those never selected (Fig. A10). 
Among the group of variables selected by several ap-
proaches were bio1, bio5, bio10, bio2, bio3 and bio11, 
all relating to temperature. Which of them was selected 
to represent climate effects differed between modelling 
approaches, however. Precipitation-related variables 
(bio12-19) were rarely selected, except by iVIF-
clustering. 
 Our case study 3, the analysis of variables driv-
ing bird diversity in the countries of the world, high-
lighted the problem of non-concurrent model results. 
Findings here were very different to case study 2, since 
virtually every predictor was selected by one method or 
another. Most noticeable in this case study is that sever-
al methods gave many predictors some importance, thus 
smearing importance across all of them (seqreg, BRT, 
PLS, ridge, randomForest: Fig. A13). The BRT ap-
proach, which put importance on every variable, led to 
an excellent fit but came with the problem of interpret-
ability. The other extreme was formed by the DR clus-
tering approach, which resulted in a manageable num-
ber of predictors but at the cost of a rather poor fit: it 
selected two nonsensical socio-economic variables as 
key predictors (political stability and governmental 
efficiency). Using a large number of predictors did not 
necessarily lead to a good fit: ridge as well as random-
Forest distributed the importance over a large number 
of predictors but still yielded only moderate fits. Only 
sequential regression and select07 led to relatively 
small, easily interpretable models. Favouring parsimo-
nious models in the presence of high collinearity might 
be misleading: interpretation needs to consider the 
collinear variables as well because the central variable 
of a proxy set still reflects the shared variance with the 
collinear predictors. 

From our case studies we conclude that under 
severe collinearity all methods are likely to remain 

oblivious to the underlying true relationships. Under 
moderate collinearity, however, all methods performed 
acceptably. Our analyses cannot substantiate claims that 
some methods are inherently preferable to others, once 
the threshold to severe collinearity has been surpassed. 

Appendix 1.3: Methods not 
incorporated in this study 
Since the realm of regression methods is vast, we have 
focussed here on methods commonly used or likely to 
have promise; the review and following case study is 
not exhaustive. (All code for data generation is availa-
ble in the supplementary material and interested readers 
can apply it to any method we failed to cover.) Most 
noticeably, we did not include factor analysis, alt-
hough it is a commonly employed method in sociologi-
cal and also ecological research (see Glass and Taylor 
1966, Gorsuch 1993, for classical accounts). Factor 
analysis is an exploratory or confirmatory technique, 
not primarily designed to remove collinearity in predic-
tors. If used in that way, results largely fall together 
with those of principal component analysis. Further-
more, in factor analysis the number of factors to be 
extracted needs to be optimised. During preparatory 
analyses, factor analyses failed to converge both under 
very high and very low collinearity, and hence proved 
difficult to automate (Velicer and Douglas 1990, 
Velicer and Jackson 1990).  
 We also omitted hierarchical partitioning 
(Chevan and Sutherland 1991, Heikkinen et al. 2005), 
because although it helps to separate individual and 
joint effects of correlated variables, it lacks statistical 
rigor (there is, e.g., no statistical basis for the averaging 
across hierarchies). Also, the models specified are over-
simplified since hierarchical partitioning models do not 
allow for non-linear relationships between response and 
predictor, nor interactions between predictor variables.  
One major theme in machine-learning is to combine 
multiple models into one (Hastie et al. 2009). In analo-
gy, multi-model predictions based, e.g., on AIC-
weights of alternative (generalised) linear models 
(Burnham and Anderson 2002) could also form a basis 
for a method unaffected by collinearity in the sense that 
different predictors could be assigned to different mod-
els. While this is an option for small data sets with few 
predictors (see e.g. Dormann et al. 2008b, for an 
application), large data sets and many predictors require 
huge computer resources with little gain over efficient 
machine-learning approaches, and hence we did not 
investigate this option further. 

Two other methods we knowingly omitted were 
path analysis, because it requires an expert pre-
definition of possible models and is hence not amenable 
to automatic implementation; and the stepwise colline-
arity diagnostic (SCD: Brauner and Shacham 1998), 
because we found no open source implementation. 

Variables

M
et
ho
ds

rf

cluster

ridge

mars

dr

gam

pls

glm

brt

select07

seqreg

tem_sea urban voi_acc GDP_in gov_eff prc_y pol_sta tem_y IU_area forest arbl GDP_ppp elev IU_cou slope reg_qua prc_seaGDP_ag rul_law HDI shrub con_cor

0.0

0.1

0.2

0.3

0.4

 
Fig. A13. Global bird diversity case study: relative importance 
of predictor in the different collinearity approaches. Variables 
sequence is according to their average relative importance across 
the 10 methods (decreasing from left to right); methods sequence 
according to their R2 (decreasing from top to bottom). See Fig. 
A5 for names of variables. 
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