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Abstract   We analyse the coarse-scale distribution of sperm whale around Ant-
arctica as an example study of a typical species distribution model. Following the 
outline and structure in chapter XX, we demonstrate each point with this data set, 
show results and their interpretation, compare two modelling techniques (GLM 
and Boosted Regression Trees), and discuss the steps of the analyses in the light of 
the ecology behind the target species. Data and R-code are provided in order for 
readers and teachers to be able to reproduce our analysis. 

Introduction 

In the following pages, we use some data collected over the course of almost 25 
years during cetacean IDCR-DESS SOWER surveys conducted around Antarc-
tica. Using only sperm whale sightings and some basic effort information, we use 
this data to run through a typical species distribution analysis. Every data set of-
fers its own challenges, and while we can provide an example, we cannot provide 
a recipe that can be transferred one to one.    

The structure is simple. We follow the general outline given in chapter XX 
(Modelling Species’ Distributions), and present the code to run the analyses. All 
code and data are available from the books accompanying webpage. 

The controversy about whale conservation vs. commercial whale hunting is 
largely founded in our uncertainty of the true population sizes of almost all large 
whale species. In fact, even our knowledge of the most relevant habitat prefer-
ences of these highly migratory animals with often circum-global ranges is re-
stricted to relative small geographic areas (Hamazaki 2002; Laran and Gannier 
2008; Torres et al. 2008), obviously due to the extreme difficulty of covering vast 
amounts of ocean surface and the relatively low detection probability of creatures 
living in three dimensions, but being only monitored in two. Most existing large-
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scale data sets about cetacean occurrence are either limited to presence-only re-
cords such as those available through online data repositories (e.g. OBIS, 
www.iobis.org). These data are compiled from a variety of different sources, 
greatly varying in quality with respect to survey design and/or reliable species 
identification. In addition, they rarely meet the assumption of a representative 
sampling coverage in terms of available habitat. As a consequence predictions of 
large-scale species distribution based on these data are limited to very simple envi-
ronmental envelope or niche models {Kaschner, 2006 #8194; Ready, 2010 #8195, 
www.aquamaps.org}.  

In contrast, dedicated cetacean surveys providing presence-absence information 
tend to be limited to relatively small scales and short time periods, thus only pro-
viding small snapshots of a species occurrence and habitat usage in time and 
space. Some of the most comprehensive surveys are the IDCR-DESS SOWER 
circumpolar cruises, organized and funded and organized by the International 
Whaling Commission (IWC) and its member state and regularly conducted in 
Antarctic waters since the 1970s (Branch and Butterworth 2001; IWC 2001; 
Kasamatsu et al. 2000b). The primary focus of these surveys is the assessment of 
baleen whale abundance (Branch 2007; Branch and Butterworth 2001; 
Butterworth and DeDecker 1989; Corkeron et al. 1999; Goodall 1997; Kasamatsu 
et al. 2000a; Kasamatsu et al. 1988; Kato et al. 1995; Matsuoka et al. 2003), al-
though some attempts have been made to use these data (in combination with oth-
ers) to investigate habitat usage (Kasamatsu et al. 2000a) and to model cetacean 
distributions (Hedley et al. 2001), but the emphasis has been on mostly on mys-
ticete species. Here, we will therefore focus on the sperm whale, the largest of the 
odontocete species, known to feed almost exclusively on deep-sea giant squid. As 
a consequence most regional studies investigating habitat usage of sperm whale 
elsewhere in the world have therefore identified slope as one of the primary pre-
dictors of species occurrence (Davis et al. 2002; Hamazaki 2002; Praca and 
Gannier 2008). 

 
Fig. 1. Map of the southern hemisphere and the 5° grid cells visited during at least one of 
the three circumpolar IWC IDCR-DESS SOWER cruises conducted between 1978-2001 . 
Black squares indicate cells with at least one reported sperm whale sighting, grey squares 
no sightings. 
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An example analysis 

If you are unfamiliar with R, please refer to one of the many documents and books 
available1 

Loading, exploring and transforming the data 

Response variable 

Our response is binary, requiring no further considerations. If your data are heav-
ily distorted, you may have to seek refuge in transformation. Note that the pre-
ferred option is always to model the data you have. Poisson and negative binomial 
should be able to take care of many skewed count data. Gamma distribution is an 
option for various strange distributions (Bolker 2008). If these “standard” options 
fail, consult a standard textbook about traditional transformations towards normal-
ity (Crawley 2002; Draper and Smith 1998; Neter et al. 1993; Quinn and Keough 
2002; Sokal and Rohlf 1995; Underwood 1997; Zar 1996) or Bolker (2008) for an 
introduction to mixed distributions. 

Explanatory environmental variables 

Look at distribution of these variables and transform to maximise uniformity2: 
names(SW) 

The first variable of interest is “AreaBelow100” (the total area below 100m of 
depth in each of the 5° cells). The others before will not be used as such. 
hist(AreaBelow100); summary(AreaBelow100) # yielding the figure below 

                                                             
1 Unter http://www.r-project.org/ check items “Books” and “Other” under the 

heading “Dokumentation”. We particularly recommend “R for Beginners” by 
Emmanuel Paradis (http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf). 
For advanced R-users, check the “R Inferno” by Patrick Burns (http://www.burns-
stat.com/pages/Tutor/R_inferno.pdf). 

2 We know already that we want to use BRT and GLM. Hence we can trans-
form the variables as a first step. Using BRT alone would not require this step. 
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See what a Box-Cox-transformation would propose: 
boxcox(lm(AreaBelow100 ~1)) #approx. 0.8 

 
hist((AreaBelow100^(-1))) # does not look that much better: 

 
We conclude that we stick to the untransformed data. 
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We now go through all variables in a similar way. This leads us to a diverse as-
sortment of transformations (log, square-root and fourth-root), as well as several 
untransformed variables. Finally, we standardize all variables3. 

Collinearity 

As a first step, we calculate a correlation matrix (round to 3 decimal places). 
round(cor(SW.t[,-c(1:4)],use="complete.obs", method="kendall"), 3) 

We can use a cluster representation to visualise collinearity. 
require(Hmisc) 

v <- as.formula(paste("~", names(SW.t)[-c(1,2)], collapse="+")) 

plot(varclus(v, data=SW.t)) # yielding the figure below  

                                                             
3 Here is the complete list of variables and transformations, stored in a new data set 

SW.t0. 
SW.t0 <- SW 

SW.t0$SSTAnMean <- log(SW$SSTAnMean + 1.8) # mean annual sea sur-

face temperature 

SW.t0$SalinityMean <- log(SW$SalinityMean) # mean annual surface 

salinity 

SW.t0$PrimProdMean <- log(SW$PrimProdMean)  # primary productivity 

(in mgC!m-"!day-1) 

SW.t0$LandDist <- sqrt(SW$LandDist)    # distance to coast 

SW.t0$Shelf <- log(SW$Shelf + 1)      # area < 200m depth 

SW.t0$Slope <- sqrt(SW$Slope)      # area >200 – 4000m depth 

SW.t0$Abyssal <- SW$Abyssal^0.25      # area > 4000m depth 

SW.t0$Seamount <- log(SW$Seamount + 1) # number of seamounts 

Other variables remain untransformed: 
DepthSD   standard deviation of cell depth 
DepthMean  mean depth of cell 
SalinityBMean  mean annual salinity at sea bottom 
DepthMin  minimum sea depth of a cell 
SSTMnMin  mean annual minimum sea surface temperature 
Coral   proportion of cell that is coral 
Estuary   area of estuaries in a cell 
SalinityMin  minimum monthly salinity 

To standardise all explanatory variables to a mean=0 and sd=1 is simple: 
SW.t <- SW.t0 

SW.t[,-c(1:4)] <- scale(SW.t0[,-c(1:4)]) 
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As we can see, several variables are unacceptably highly correlated (Spear-

man's rho2 > 0.5). From those, we use the one with higher ecological rele-
vance/interpretability (or, if this is not possible, highest importance in the ran-
domForest model): 

• DepthMean > DepthMax, Abyssal 
• DepthMin > Shelf, IslandsNo, LandDist,  
• SSTAnMean > IceConAnn, SSTMnMax, SSTAnSD, SSTMnRange, 

OceanArea, AreaBelow100 
• SSTMnMin > SBTAnMean 
• SalinityMean > SalinityMax 

This leads to a reduced data set. 
SW.t.red <- SW.t[ , c("PAsperm", "CsquareCode", "CenterLat", "Center-

Long", "Slope", "DepthSD", "Seamount", "DepthMean", "SalinityBMean", 

"DepthMin", "PrimProdMean", "SSTAnMean", "SSTMnMin", "Coral", "Estu-

ary", "SalinityMin", "SalinityMean")] 

Dimensional reduction 

Our data set still comprises 13 predictors (not counting geographical location) for 
“only” 261 data points. In a GLM, using all 13 predictors, their first-order interac-
tions and non-linear effects would lead to roughly 100 effects in the full model. 
Because we doubt that all variables are ecologically meaningful (e.g. proportion 
coral reefs or estuaries), we would have eliminated those before even entering the 
analysis. For the sake of demonstration, however, we pretend that all 13 variable 
could be reasonably correlated with sperm whale occurrence. To nevertheless re-
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duce the number of predictors, we can use a univariate pre-scan, for example a 
GLM or GAM. Since some predictors may interact, this univariate pre-scan may 
not be unbiased. Instead, we use a machine-learning algorithm, called randomFor-
est, to rank variables by importance (Breiman 2001; Hastie et al. 2008). 
require(randomForest) 

f <- as.formula(paste("as.factor(PAsperm)~", paste(names(SW.t.red)[-

c(1,2)], collapse="+"), sep="")) 

rf <- randomForest(f, data=SW.t.red, na.action=na.omit, importance=T) 

varImpPlot(rf)   # yielding the figure below 

 
There are different ways to quantify importance of variables in randomForest4. 
Hastie et al. (2008, page 593) recommend using the Gini coefficient (right panel) 
for evaluating importance. Here, "SSTAnMean" "SalinityBMean" "DepthSD" 
"SalinityMean" "DepthMean" come out as the top five. It is somewhat arbitrary to 
set a threshold here, apart from the apparent “knee” after the first two and before 
the last two predictors. 
 
The final preparational step is to visualize the parameter space. Let us look at 
the two most important variables, SSTAnMean and SalinityBMean (untrans-
formed). The two are uncorrelated (Kendall’s ! = 0.377), but clearly there are only 
few regions in the parameter space that is actually covered, even inside the convex 
hull! 
pair <- SW.t.red[,c("SSTAnMean", "SalinityBMean")] 

plot(pair, pch="+", cex=2, col=rgb(.5,.5,.5,.5), las=1, tcl=0.5, 

main="Observational space of sea surface temperature and salinity") 

polygon(pair[chull(pair),], lwd=2, border="grey") 

                                                             
4 By default, mean decrease in accuracy and in Gini coefficient are returned. See help page for de-

tails: ?randomForest 
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The majority of data points are from near Antarctica, hence sub-zero temperature. 
The trips to South Africa, South America and Australia yield the high-temperature 
values. Remember that we actually log-transformed SSTAnMean to spread the 
low values and shrink the high: 

  
The effect is remarkable and should convince anyone skeptical of transformations 
of the explanatory variable. The coverage of the parameter space is much better 
now. 
We continued for other combinations, but omit this here. 

Modelling 

Our statistical analysis comes in two flavors, Boosted Regression Trees and GLM. 

Boosted Regression Trees 

First, we include helper R-code to facilitate our analysis (from Elith et al. 2008). 
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source("brtfunctions.r") 

BRT offers various specifications; crucial ones are  

• tree.complexity (don't use high values, e.g. > 5) 
• learning.rate (the lower the slower; good values are 0.01 to 0.001) 
• bag fraction (the proportion of data points used for fitting) 
For defaults type: fix(gbm.step) and read the paper. Running the model itself is 
straight forward: 

f.brt <- gbm.step(data=SW.t.red, gbm.x = 5:17, gbm.y = 1, family = 

"bernoulli",  tree.complexity = 3, learning.rate = 0.01, bag.fraction 

= 0.5, verbose=TRUE, silent=FALSE, plot.main=TRUE) 

 
The graph returned depicts the development of residual variance in the valida-

tion data sets: the lower, the better. At some point there are too many trees, and 
the BRT overfits the data (the lines go up again). This point (indicated by a verti-
cal green line) is the BRT-set used. 

We can ask for an importance table similar to that for randomForest (here as 
percentage of all variance that is explained by a specific variable), and plot the 
partial plots, i.e. the functional relationships for each variable, averaged across the 
values of all other variables. 
summary(f.brt)  

gbm.plot(f.brt, smooth=T, n.plots=8, write.title = F) 
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GLM 

For the GLM, we have to restrict the number of variables, based on a rule of 
thumb and the effective sample size (Harrell 2001). 
table(SW.t.red$PAsperm) 

# 0   1  

#146 115 

Since we have an effective sample size of 115, and we want to have at least 10 
data points support per variable (events per variable, EPV=10), we allow only 10 
effects into the GLM. We know (from the partial BRT plots) that variable effects 
are non-linear, hence we also include quadratic terms, as well as interactions. We 
start with a more complex, full model and reduce it to the desired complexity5: 
source("COLL_allfunctions.r") 

f <- formula.maker(SW.t.red[,c("PAsperm", "SSTAnMean", "Salin-

ityBMean", "DepthSD", "SalinityMean", "PrimProdMean")]) 

fm <- glm(f, data=SW.t.red, family=binomial) 

anova(fm, test="Chisq")  # just a quick look at the first, overfitted 

model 
Since the function for SSTAnMean looked very non-linear in the BRT plots, lets 
add a third-order polynomial: 
fm <- update(fm, .~. + I(SSTAnMean^3)) 

Model simplification 

                                                             
5 The formula.maker function is a little convenience function for automatically 

formulating quadratic and/or interaction terms. 
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Obviously, this full model is unacceptably complex. We use an automatised step-
wise backward selection procedure to simplify the model. Our criterion is, in con-
trast to what is implied by the name of the function, not the AIC, but the BIC6. 
fm.red <- stepAIC(fm, k=log(115)) 

anova(fm.red, test="Chisq") 

From the first parameter-space plot above we know that the interaction of 
SSTAnMean and SalinityBMean cannot be supported by data. We thus manually 
delete this interaction: 
fm.red2 <- update(fm.red, .~. - SSTAnMean:SalinityBMean) 

anova(fm.red2, test="Chisq") 

We cannot remove main effects when they are part of a significant interaction 
(marginality theorem). A quadratic effect without the main effect is "allowed", but 
strange. Let's put the main effect in, too: 
fm.red3 <- update(fm.red2, .~.-I(DepthSD^2)+poly(DepthSD,2)) # not 

significant 

anova(fm.red3, test="Chisq") 
We can now compare the two models: Was the quadratic effect worth its inclu-
sion? 
anova(fm.red3, fm.red2, test="Chisq") 

No, models 3 and 2 are indistinguishable, so we use the simpler (3). Let's do the 
same for SSTAnMean: 
fm.red4 <- update(fm.red2, .~.-I(SSTAnMean^3)-

SSTAnMean+poly(SSTAnMean,3)) 

anova(fm.red4, test="Chisq") 

Was it worth it? 
anova(fm.red4, fm.red2, test="Chisq") 

No evidence! Still, for reasons of elegance and beauty, let's stick to the “proper” 
polynomial effect of SSTAnMean! (This is to show that there is always a level of 
arbitration in statistical modelling!) 
                           Df Deviance Resid. Df Resid. Dev P(>|Chi|)     

NULL                                         260     358.13               

SalinityBMean               1    10.40       259     347.73 0.0012614 **  

SalinityMean                1     0.42       258     347.32 0.5194294     

PrimProdMean                1     2.73       257     344.59 0.0987485 .   

I(DepthSD^2)                1    14.10       256     330.49 0.0001735 *** 

poly(SSTAnMean, 3)          3    26.92       253     303.57 6.111e-06 *** 

SalinityMean:PrimProdMean   1    18.77       252     284.80 1.477e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

                                                             
6 AIC (Akaike Information Criterion) penalises every parameter in the model 

with a factor of 2. The BIC penalises heavier, with a factor of loge(effective sam-
ple size), i.e. 4.7. This yields smaller models, particularly with many data points. 
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Model diagnostics 

Now that we have a “final models”, it’s time to have a closer look at them. First, 
we want to get a feeling whether the error distribution has been handled properly: 
par(mfrow=c(1,2)) 

hist(residuals(f.brt)) 

hist(residuals(fm.red4)) 

 
In both cases (BRT left and GLM right), residuals clump around two values 

(1/–1). This indicates that a substantial part of the data were estimated as absent 
when present (leading to positive values) or vice versa (negative values). The BRT 
is more "categorical" in its predictions, making the residuals larger. Note that 
these values are at the "link-scale", and hence a value of 1 represents a probability 
of  
plogis(1) # 0.73. 

But: are they good? Model fit is given by the reduction in deviance: 
summary(fm.red4) 

An intercept-only model ("null model") has a deviance of 64.3, while our final 
model reduces this to 57.6 - a moderate decrease. Expressing this as R2 is tricky, 
there are different definitions for R2s for GLMs. A pseudo-R2 (also named D2, be-
cause it is based on deviance) can easily be calculated as (358.1–284.8)/358.1  = 
0.204, i.e. 20% explained deviance. In GLMs, explained deviance in a good model 
rarely exceeds 0.3, but 0.2 is not a yet a really good model. Often we use AUC to 
express the ability of a model to discriminate between 0s and 1s. 
require(verification) 

For the GLM, AUC is: 
roc.area(obs=SW.t.red$PAsperm, pred=predict(fm.red4, 

type="response")) #0.78 
For the BRT, we can calculate the same (but need to give some more informa-

tion)7: 
                                                             
7 However, BRT also returns this value when fitting (scroll in your R-window or 
repeat the BRT analysis and check): training data ROC score = 0.883 
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roc.area(obs=SW.t.red$PAsperm, pred=predict(f.brt, newdata=SW.t.red, 

type="response", n.trees=200)) #0.883 
Additionally, it gives the average cross-validation AUC-value, which is a much 

better indication of the model's predictive performance (and usually much lower): 
cv ROC score = 0.677 ; se = 0.037  

It is also extractable using:  
mean(f.brt$cv.roc.matrix) 

This drop in AUC from training to cross-validation is typical for weak models. 
Another thing to inspect binomial (and poisson) GLMs for is overdispersion. An 
estimate of dispersion is calculated by dividing the residual deviance by the resid-
ual degrees of freedom: 
284.8/252 #1.13 
High values (say, > 2 or so) indicate a problem8.  

To summarise model fits: 

• Models are not spectacularly good, but not all that bad either. 
• Predictive performance for models with an AUC around 0.8 is usually deemed 

“moderate”. 
• BRT: Annual mean sea surface temperature and salinity at the bottom are most 

relevant. 
• GLM: Annual mean sea surface temperature and also bottom salinity are most 

relevant. 

At least the two models are somewhat consistent! 

Spatial Autocorrelation 

In a sense, testing for spatial autocorrelation is also part of model diagnostics. 
Spatial autocorrelation (SAC) in the model residuals is indicative of a violation of 
the assumption of data independence, and is all too often violated when analysing 
spatial data. We can investigate SAC by plotting a correlogram, which depicts 
similarity of residuals as a function of distance in space. 

To get a feeling for the distances, we first make a histogram of Euclidean dis-
tances (which is wrong, because the earth is a sphere where -175° is close to 
+175° and no distance can be greater than 180*sqrt(2)). We are here, however,  
only interested in the spacing (grain size) and the min distance. 
hist(d <- dist(SW[,3:4])) 
min(d)  

                                                             
8 By choosing the option "quasibinomial" as family (which yields no AIC and 

can hence not be used with stepAIC), we can fit an overdispersion parameter, 
which corrects the estimates of the parameter errors. 
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The shortest distance between two cells is 5° (as we know from the initial reso-
lution), the histogram proposes steps of about 20 units. Now we plot a correlo-
gram, acknowledging also the spherical nature of the data set (by setting latlon to 
TRUE; this leads to the transformation of degrees into kilometres).  

 
require(ncf) 

cor.fglm <- correlog(x=SW$CenterLong, y=SW$CenterLat, 

z=residuals(fm.red4), increment=20, resamp=999, latlon=T) 

plot(cor.fglm) 

abline(h=0) 

This plot (not shown) is a bit cluttered and "long". Distance-classes over about 
400 units9 (i.e. 400 * 20 km = 8000 km) contain only few data points10. Moreover, 
it is unlikely that biological mechanisms lead to separation or aggregation of 
sperm whales at distances of more than, say, 1000 km. We can thus truncate the 
plot at 1000/20 = 50 units. 
plot(cor.fglm$mean.of.class[1:50], cor.fglm$correlation[1:50], 

type="n", lwd=2, col="grey", xlab="distance [km]", ylab="Moran's I", 

las=1, tcl=0.5) 

abline(h=0) 

lines(cor.fglm$mean.of.class[1:50], cor.fglm$correlation[1:50], 

lwd=2, col="grey") 

points(cor.fglm$mean.of.class[1:50], cor.fglm$correlation[1:50], 

pch=16, col=ifelse(cor.fglm$p<0.05, "black", "grey90"), cex=1.5) 

                                                             
9 The unit is given by the original data, or, in this case, in km, because we used the option “lat-

lon=T” to tell the function that we use degrees. It then automatically transforms data into kilometers 
(see ?correlog). By setting “increment=20”, we use 20 km distance classes. A bit confusing, 
admittedly. 

10 Type cor.fglm$n to get a listing of the number of comparisons per distance bin. 
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What we see is a significant positive spatial autocorrelation at 200km and again 

at around 500, 620-640, ... and a negative SAC at 820 km. We shall now try to ac-
count for this pattern. From experience, we would not expect to remove all of this 
pattern, but primarily the peak at 200 km, and perhaps those around 600-800 km. 
The method we use is called "spatial eigenvector mapping" or "principal coordi-
nates of neighbourhood matrix" (Dray et al. 2006; Griffith and Peres-Neto 2006). 
First, we construct a list, which contains the neighbours' IDs for each data point. 
There are several ways to do so11. Note that coordinates must be given as long-lat, 
not lat-long which is consistent with plotting, but not with common usage)! 
Values for d1 and d2 must be given in kilometres. 
require(spdep) 

SW.nb <- dnearneigh(as.matrix(SW[,4:3]), d1=0, d2=2000, longlat=T) 

summary(SW.nb) 

ME.fit <- ME(fm.red4$formula, listw=nb2listw(SW.nb), data=SW.t.red, 

alpha=0.5) 

SW.t.red <- cbind(SW.t.red, fitted(ME.fit)) 

f <- as.formula(paste("PAsperm ~ ", fm.red4$formula[3], "+ 

vec1+vec3", sep="")) 

fm.red4.me <- glm(f, data=SW.t.red, family=binomial) 

anova(fm.red4.me) 

So, the spatial dimension has almost as much relevance as the SSTAnMean-
effect. Let us compare model coefficients to see whether these were affected by 
spatial autocorrelation: 
summary(fm.red4) 

summary(fm.red4.me) 

Coefficients: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)                -0.2914     0.2100  -1.388 0.165280     

                                                             
11 In R, check: ?knearneigh, ?dnearneigh, ?gabrielneigh 
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SalinityBMean               1.1655     0.3400   3.428 0.000609 *** 

SalinityMean               -0.5417     0.3218  -1.683 0.092301 .   

PrimProdMean                0.3425     0.2519   1.360 0.173911     

I(DepthSD^2)               -0.5261     0.1502  -3.504 0.000459 *** 

poly(SSTAnMean, 3)1        -1.2922     4.1035  -0.315 0.752835     

poly(SSTAnMean, 3)2       -11.8564     4.2140  -2.814 0.004899 **  

poly(SSTAnMean, 3)3        11.9884     4.1264   2.905 0.003669 **  

SalinityMean:PrimProdMean   0.9693     0.2560   3.787 0.000153 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

    Null deviance: 358.13  on 260  degrees of freedom 

Residual deviance: 284.80  on 252  degrees of freedom 

AIC: 302.80 

 

> summary(fm.red4.me) 

Coefficients: 

                          Estimate Std. Error z value Pr(>|z|)     

(Intercept)                -0.3676     0.2176  -1.689 0.091146 .   

SalinityBMean               0.8078     0.3641   2.218 0.026528 *   

SalinityMean               -0.2969     0.3401  -0.873 0.382675     

PrimProdMean                0.4991     0.2724   1.832 0.066937 .   

I(DepthSD^2)               -0.3755     0.1527  -2.459 0.013945 *   

poly(SSTAnMean, 3)1        -1.2124     4.4624  -0.272 0.785866     

poly(SSTAnMean, 3)2       -19.9111     4.9962  -3.985 6.74e-05 *** 

poly(SSTAnMean, 3)3        14.2866     4.5395   3.147 0.001648 **  

vec1                       10.5542     2.9731   3.550 0.000385 *** 

vec3                       -7.1767     2.6968  -2.661 0.007786 **  

SalinityMean:PrimProdMean   0.7996     0.2506   3.191 0.001417 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

    Null deviance: 358.13  on 260  degrees of freedom 
Residual deviance: 264.62  on 250  degrees of freedom 

AIC: 286.62 

Indeed! Parameter errors became smaller and parameters changed by tens of 
percent! Finally, let us investigate whether this new model has lower spatial auto-
correlation in its residuals: 
cor.fglm.me <- correlog(x=SW$CenterLong, y=SW$CenterLat, 

z=residuals(fm.red4.me), increment=20, resamp=999, latlon=T) # takes 

a while (1 min or so) 

lines(cor.fglm.me$mean.of.class[1:50], cor.fglm.me$correlation[1:50], 

lwd=1, col="black") 
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points(cor.fglm.me$mean.of.class[1:50], 

cor.fglm.me$correlation[1:50], pch=16, col=ifelse(cor.fglm$p<0.05, 

"black", "grey90"), cex=1) 

There is little difference overall (graph not shown), main effect at 200 and 600 
km and at the funny peak at 1400 km. This indicates that our approach to adderss 
spatial autocorrelation has improved the model only marginally. Given that spatial 
eigenvectors are a very flexible method, it is unlikely that other approaches 
(reviewed in Carl et al. 2008; Dormann et al. 2007) would do a much better job. 
Just for fun, let us have a look what the eigenvector 1 looks like on a map: 
require(lattice) 

levelplot(SW.t.red$vec1 ~ SW$CenterLong+SW$CenterLat, aspect="iso") 

This eigenvector thus codes for some effect that is high around Australia (+/-
180°, see the upper panel of the figure below) and low around South Africa 
(around 0°). 
levelplot(SW.t.red$vec3 ~ SW$CenterLong+SW$CenterLat, aspect="iso") 

Vec 3 in contrasts codes a much more fine-scaled pattern of unknown origin 
(representing only that part of the cruises which went up the eastern South African 
coast). 

 

 

Interpretation 

To be able to interpret the models, we have to make plots of the functional rela-
tionships they describe. To do so, we can also back-transform predictor variables 
(first un-standardise, then un-transform). The effect of SSTAnMean on occurrence 
probability for BRT (black line) and GLM (grey lines plus CI) are depicted here 
for both untransformed and transformed annual mean sea surface temperature: 
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There are some obvious messages that we can take from these two graphs. Firstly, 
the BRT make step-like predictions, while the GLM fit a smooth function. Sec-
ondly, GLM seems to be more responsive, predicting greater changes in occur-
rence probability. This is, however, not a general feature of GLMs and possibly 
even an exception. Thirdly, the wide peak dominating the left panel (at the trans-
formed scale) becomes a narrow spike on the untransformed axis (right panel). 
Here, the moderate but steady increase from values higher than approximately 3°C 
is more apparent (but also highly uncertain!). For all other model parameters, a 
similar plot is indicated and only omitted here due to spatial constraints. 

We close this visual exploration with an illustration that variables in an interac-
tion should not be studied on their own. The interaction in question (in the GLM) 
is that of SalinityBMean and PrimProdMean. Let us first look at a partial plot for 
SalinityBMean12. 

 

                                                             
12 The R-code for this and the following graph are too long to be given here, but are 

available as supplementary material along with the actual data. 
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We see a step-change in occurrence probability as we go from values lower 

than 0 to higher. The GLM is representing this step-change more gradually, due to 
the nature of the fitted logistic function. Since SalinityBMean interacts with Prim-
ProdMean, we should really be plotting this as a 3-D graph. Of the many ways to 
do so, here is one:  

 
The dominant pattern is the transition from low probability values (red) to high 

values (in yellow) as we move from the left to the right13. This is the same as the 
step-change in the previous graph. However, we now also notice that this step-
change is displayed (in the GLM) under very low productivity. For the BRT, the 
whole parameter space is divvied up into four rather discrete regions, also indicat-
ing an interaction and prominently displaying the step-changes induced by both 
salinity and productivity. And we notice, in this representation, that we can only 

                                                             
13 This palette of colours is called heat colours. This is why red is colder than white. While the de-

fault and logical, it is not intuitive. It’s easy to inverse, however. 
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make deductions (and, for that matter, predictions) about the region at the bottom 
centre, where the actual data points are, not even for the whole convex hull vector 
space spanned by the data points. 

Finally, because we love being fooled by maps, we can plot the model predic-
tions for sperm whale occurrence probabilities. Darker colours indicate higher oc-
currence probability, and observed presences (absences) are indicated by black 
(grey) points. 

 

 
Thus, while the image/contour-plots indicate some disagreement between BRT 

and GLM, this is not detectable on the maps. Both predict high occurrence proba-
bilities in the south Pacific and low values in the south Atlantic, with the Indian 
Ocean being in intermediate. One thing noticeable is that the GLM seems to be 
predicting higher values near ports visited by the survey vessels (Cape Town, ZA; 
Perth, AUS; Wellington, NZ). 

Ecologically, our analysis will not have revealed much new. The problem of 
habitat preferences of whales is the seemingly unstructured nature of the oceans 
(although our analysis shows that temperature and salinity pattern are present and 
relevant), the scarcity of data on whale sightings and, in consequence, the spatial 
aggregation of the data before the analysis.  

Statistically, our analysis shows nicely that very similar fits can be obtained 
from two different models. This remains a correlative analysis, and the potential 
mechanisms revealed should be interpreted as hypotheses requiring further inves-
tigation in the field. 
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Final comments 

1. If you have many steps in your analysis, and you are uncertain if they may lead 
to spurious results, use a null model to find out. In its simplest form, simply 
shuffle the response variable (sample(SW$PAsperm) in our case) and re-run the 
analysis 1000 times. Obviously you then have to automatise the entire proced-
ure. 

2. In a more realistic setting, you may want to shuffle the response but maintain 
the spatial structure. This can be done, too: see Beale et al. (2008) for methods 
and R-code. 

3. If you want to extrapolate beyond the geographic region or the parameter 
space, everything becomes rather uncertain. Note the 95% CI in the above 
plots, and how the wide towards the limits of the variable's range! The spatial 
eigenvectors (SV) are constructed in a way that their mean effect is 0. When 
you want to intra- or extrapolate, you have to make a "map" of the eigenvectors 
and use kriging to extrapolate in space to unobserved sites. 
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Exercise 

The data show a clear relationship between sampling effort and probability of 
sperm whale sighting. This variable has not been used to correct the data.  

As exercise we recommend repeating the entire analysis, but forcing TotalEf-
fort to always be in the model (i.e. as a correcting covariate). 

In several places, this will lead to problems that need to be overcome. For ex-
ample, a stepwise model simplification with one variable always in the model 
needs to be done either by hand, or by scrutiny of the function stepAIC and its 
help page.  

If you manage to replicate this analysis, and do the same with the sampling ef-
fort correction, you will have mastered more than most species distribution ana-
lyses published to date! 

 
Good luck! 
 


