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Abstract 
The analysis of ecological networks has gained a very prominent foothold in ecology over the last years. While 
many publications try to elucidate patterns about the networks, others are primarily concerned with the role of 
specific species in the network. The core challenge here is to tell specialists from generalists. While field data 
and observations can be used to directly assess specialisation levels, the indirect way through networks is 
burdened with problems. 

Here, I review eight measures to quantify specialisation in pollination networks (degree, node specialisation, 
betweenness, closeness, strength, pollination support, Shannon’s H and discrimination d’), the first four being 
based on binary, the others on weighted network data. All data and R-code are available as supplement and can 
be applied beyond pollination networks. 
The indices convey different concepts of specialisation and hence quantify different aspects. Still, there is 
some redundancy, with node specialisation and closeness quantifying the same properties, as do degree, 
betweenness and Shannon’s H. 

Using artificial and real network data, I illustrate the interpretation of the different indices and the 
importance of using a null model to correct for expectations given the different observed frequencies of 
interactions. For a well-described network the distributions of specialisation values do not differ from null 
model expectations for most indices. 

Finally, I investigate the effect of cattle grazing on the specialisation of an important pollinator in eight 
replicated pollination networks as an illustration of how to employ the specialisation indices, null models and 
permutation-based statistics in the analysis of specialisation in pollination networks. 
 
Keywords bipartite network; degree; discrimination; node specialisation index; pollinator; pollination service 
index; strength; two-mode network. 
 
 
1 Introduction 
“All animals are equal, but some animals are more equal than others.” (Orwell, 1945). This certainly describes 
well the current paradigm of pollinator generalisation: Most pollinators seem to be generalists, with some 
spectacular, but rare, exceptions of high specialisation (as reviewed, e.g., in Waser, 2006). At the same time, 
recent re-analyses of pollination networks indicate that some degree of specialisation is common, both at the 
network level and for the pollinators themselves (Jordano, 1987; Vázquez and Simberloff, 2002; Vázquez and 
Aizen, 2004; Vázquez and Aizen, 2006; Bascompte et al., 2006; Blüthgen et al., 2007). However, there are 
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different ways to measure specialisation of pollinators, some more obvious than others. The reason is that there 
are also more than one way to think about specialisation. At the first level, a specialist pollinator can be 
defined as a pollinator that visits (and hence pollinates) only a limited number of plant species. However, one 
can also consider each pollinator in its community context, the second level. Then a specialist could be viewed 
as a species that has little overlap with the preferences of other pollinators in the community, i.e. one that has 
different flower preferences from the others. It will thus be less redundant than a generalist, and its loss from a 
community has potentially greater effect on the plant community. Finally, we may want to consider 
specialisation at the third level as the outcome of evolutionary diversification, from a hypothetical generalist 
pollinator community to an optimum distribution of specialisation. In this case, specialisation would give us a 
way to compare, across networks, the deviation from a network of only generalists. 

Given this range of possible questions behind pollination specialisation studies, it is no surprise to find a 
range of specialisation indices with different intentions. Following the first definition, a specialist pollinator 
can be identified by the number of links (a species’ degree). Specialists have lower degree than generalists. 
For the second definition, indices use information on the proportion of visits to other plant species (strength), 
on the position of a pollinator in the network (node specialisation, betweenness) or they are related to the 
pollination service a species actually provides. For the third definition, a network-independent measure is 
required, based for example on how much a pollinator discriminates against which plants are on offer. Below, I 
described in more detail eight specialisation indices that have been used to quantify specialisation in any of the 
three definitions.  

Degree, node specialisation, betweenness and closeness centrality are binary indices, i.e. they make no use 
of the number of visits recorded for each interaction. In the extreme this means that even if a pollinator visits a 
single plant species in 90% of its visits, and distributes the other 10% over all plant species in the network, this 
species will have a high degree and hence count as a generalist. That is not intuitive, although it is consistent 
with a strict definition of specialisation. While degree counts the number of plants a pollinator interacts with, 
the other three binary indices are based on the position (as given e.g. by path length distances) of the pollinator 
in the network. 

In a weighted network also information on which proportion of visits are paid to the different plant species 
are used. Strength, pollination service (PSI), Shannon’s host diversity H and d’ and use this quantitative 
information to calculate specialisation. They each address slightly different questions. A species’ strength 
describes how much the plant community depends on the visits by this particular species (Jordano, 1987). The 
logic of PSI is that a pollinator that visits many different species will also deliver diluted pollen to any of the 
target species. Its value for this specific plant may thus be compromised. PSI attempts to quantify the service 
of a pollinator for all plants in the network. Shannon’s host diversity is a weighted version of degree, down-
weighting rare visitations. D’, on the other hand, corrects for different abundances of plants and pollinators. Its 
developers (Blüthgen et al., 2006) argue that a pollinator that makes use of the most common flower source 
should not be deemed a specialist. Rather, we should consider the discrimination between what is on offer and 
which plants the pollinator visits as important. 

In the following, I first define the indices and discuss their properties. Then I look at the specialisation 
indices for the pollinator in an artificial network to illustrate how the indices reflect the actual degree of 
specialisation, also by contrasting observed visitations with expectations from a null model. Next, I analyse 21 
pollination networks with quantitative information to explore correlations between the different indices. 
Thereafter I explore one network in more detail (“Safariland” recorded by Vázquez and Simberloff, 2003), 
which has been used previously for illustration purposes because it depicts clear examples of generalists and 
specialists. Finally, I examine how to statistically evaluate how differences between two land uses affect 
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pollinator specialisation, before reflecting on the usefulness of specialisation indices in pollination networks in 
the context of pollinator morphology and behaviour. Data and R-code for all analyses are provided in the 
supplementary material following the same sequence. 
 
2 Specialisation Indices 
Here I only present specialisation indices based on networks (Table 1), and none of those directly used on field 
data  (see, for example, Fenster et al., 2004; Ollerton et al., 2007). 
 
 
Table 1 Overview of specialisation measures. NI and NJ refer to the number of plant and pollinator species in the network, 
respectively. 
Index Network 

type 
Min Max Value for

specialist
Comments 

Degree Binary 1 NI low Shannon’s H and strength can be 
interpreted as quantitative versions of 
degree 

Normalised 
degree 

binary 0 1 low Computed as degree/NI 

Node 
specialisation 
index NSI 

binary 1 NJ/2 high Co-determined by specialisation of other 
pollinators in the network; based on path 
lengths 

Betweenness 
centrality BC 

binary 0 NJ(NJ–1)/2* low Based on path lengths; similar to NSI, but 
more common 

Closeness 
centrality CC 

binary 0 (NJ–1)/2* low Based on path lengths; see Butts (2009) 
for implementational details 

Strength weighted 0 NI ** unclear Co-determined by specialisation of other 
pollinators in the network; computed as 
dependence-weighted degree 

Pollination 
Support Index PSI 

weighted 0 1 (high) Specialists have a high PSI, but only when 
the plant is also specialised on them; 
common generalists can also have 
relatively high PSI values; extension of the 
idea of strength  

Shannon’s 
diversity H 

weighted 0 ln NI low  

Effective number 
of partners 

weighted 0 NI low Shannon’s H converted into the degree 
scale 

d’ weighted 0 1 high Measures specialisation as discrimination 
from expectation based on how many 
interactions a plant has *** 

* Based on the non-normalised definition. 
** The maximum value for strength of pollinator i is the degree of i. Since the maximum degree is NI, theoretically this is also 
the maximum for strength. For example in a “network” with only one pollinator and 10 plants, degree would be 9, as would be 
strength. 
*** Number of interactions is taken as surrogate for their abundance or attractiveness to all pollinators. If true abundances are  
known, they can be used instead. 
 
 
2.1 Degree (qualitative measure)  
A pollinator’s degree is simply the number of observed plant-links of that species: a higher degree value 
indicates a higher level of generalism. The intensity of interactions is irrelevant, i.e. degree is calculated based 
on a binary interaction matrix. Thus, degree describes specialisation in a qualitative way similar to describing 
diversity as number of species (Blüthgen et al., 2006). In the literature, it is the distribution of degrees within a 
network that has found much interest, more so than the degree of a pollinator itself (e.g. Bascompte et al., 2006, 
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Burns, 2007, Dunne et al., 2002, Jordano, 1987, Jordano et al., 2003). Normalised degree (Martín Gonzáles et 
al., 2010) re-scales degree by dividing it by the number of plant species on offer, thus ranging it between 0 and 
1. 
2.2 Node specialisation index (NSI, qualitative measure)  
NSI is calculated as the mean path length, also known as geodesic distance dij, in a one-mode network between 
each pollinator and every other pollinator (based on an idea presented by Dalsgaard et al., 2008):                      

n

ji

ij
i nn

d
NSI

)1(
 . When two pollinators visit the same plant species, the path length between them is 1. 

Two pollinators not visiting the same plant species may be linked through a third pollinator, which has a 
visitation in common with either of them. Then, the path length between the two original pollinators is 2. 
Hence, a (minimum) NSI of 1 indicates that a species is linked to all other pollinators directly, while a NSI of 3 
indicates that it is, on average, three links away from all other pollinators. The logic behind this approach is 
that a pollinator with a low NSI does not contribute much to the pollination of plant species, because it only 
pollinates plant species already visited by other pollinators. The appeal of the NSI is that it is directly based on 
network topology, but as such it also has some intrinsic problems: (1). When a network consists of two or 
more compartments, the path length to pollinators in a different compartment is infinity. Thus, the mean of all 
paths will also be infinity. This is a common and unresolved problem in network analysis. A common, but 
“non-canonical” solution (geodist help-page: Butts, 2007) is to give infinite path lengths the value of the 
longest observed path plus one. Another is to define such paths as “not available data” and hence omit them 
from calculations. NSI-values differ greatly between these two variations on how to handle compartments. (2). 
The NSI is not ranged between a minimum and a maximum, for example between 0 and 1. The lowest possible 
NSI is one, with all pollinator species being connected to all others (the self-loop of length 0 is omitted). The 
maximum, however, depends on the method of handling compartments. If no compartments are presents, the 
maximum value is NJ/2 (NJ = number of pollinators). Thus, although NSI can be used to rank species by their 
degree of “node specialisation”, it does not allow for the quantification of an absolute degree of specialisation. 
In this respect the NSI is similar to degree and strength, but inferior to d’ and PSI (see below). (3). NSI is 
defined through other pollinator species, and hence a measure of network position rather than species 
characteristics. If, for example, a pollinator was lost from the network, all NSI values would change because 
one potentially linking species is lost (independent of the way the pollinators themselves may respond to the 
changing community structure). 
2.3 Betweenness centrality and closeness centrality (qualitative measures) 
Both measures and are similar to NSI, based on a qualitative one-mode representation (e.g. Borgatti and 
Everett, 2006). They are the two most common centrality measures employed in social network analysis to 
describe how pivotal a node is for the network (Freeman, 1979) and have been proposed as measure of 
generalisation in pollination networks by Martín Gonzáles et al. (2010). Betweenness is the fraction of all 
shortest paths that pass through that node. Let n represent the number of nodes in a network, gij

 the number of 
shortest paths between them, while gij(k) is the number of shortest paths between i and j that go through k. 
Then the (normalised) betweenness centrality BC of k is defined as: 

ikji

ijij
k nn

gkg
BC

; )2)(1(
/)(

2 .  

Closeness centrality CC of k is the inverse of the average distance djk to all nodes:  
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d
CC .  

Confusingly, two definitions of closeness exist, the other one being the mean distance, rather than the 
inverse of it. This alternative definition is thus extremely similar to the NSI. Low betweenness or closeness 
scores indicate specialisation. Their limitations are similar to that of NSI (see above), e.g. with respect to 
unconnected graphs and the fact that they are qualitative indices. Notice that BC and CC are often normalised 
by dividing each by the grand sum, thus making them sum to 1. 
2.4 Strength (quantitative measure)  
This index aims at quantifying the dependence of the plant community on a given pollinator (Jordano, 1987). 
As an intermediate step, a matrix of dependencies is calculated by dividing the observed number of 
interactions by the total number of interactions for each plant. The derived values represent the dependence of 
each plant on each pollinator as the proportion of visits the plant receives from each pollinator. A pollinator’s 
strength is simply the sum of dependencies for that pollinator. Formally, if aij is the number of visit pollinator j 

pays to plant i, then the dependence for this combination is given by

i
ij

ij
ij a

a
p . The strength of species j is 

then: 
i

ijj ps . High strength indicates a high relevance of this pollinator for the plants in the system, 

which may, but need not, be a sign of specialisation. 
2.5 Pollination service index (PSI, quantitative measure)  
With the pollination service index we follow the idea of strength one step further. A pollinator is more 
important for a plant species when it is a) common and b) specialised. A rare pollinator will also only rarely 
pollinate a flower, and a generalist may deliver a large proportion of non-target plant pollen (depending on the 
way pollen is deposited on the pollinator’s body). PSI seeks to embrace both objectives by calculating the 
proportion of conspecific pollen delivered to the target plant. As such it is the product of dependencies of the 
pollinator (representing their specialisation) and dependencies of the plant (representing the importance of 
each plant species for each pollinator). For each pollinator, these values are summed. PSI has one main 
weakness (apart from the lack of evidence of its usefulness): A pollination event requires two visits (at least in 
non-autogamous plant species), one to pick up the pollen and one to deposit it, while the index assumes only 
one visit. This can easily be rectified by taking the dependence matrix of the plants to the power of two. This 
seems, however, too conservative, since pollen may hang on for several visits, thus reducing the exponent to 
an unknown value between 1 and 2. Formally, PSI is an extension of strength. Similar to pij we can define pji 

as the dependence of any pollinator j on visits to each plant species i: 

j
ij

ij
ji a

a
p . This represents the 

proportion of visits a pollinator makes to every plant, and hence is a measure of how diluted the pollen it 

carries is. PSI is then defined as:
i

jiijj ppPSI . The first factor describes how much a plant relies on a 

pollinator and the second, how much the pollinator relies on the plant. Here, an exponent  is introduced, 
which adjusts how many visits a pollinator has to make to a plant in order to pollinate it. Since this type of data 
is usually not available, we set  =1. 
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2.6 Partner diversity (Shannon’s H) (quantitative measure)  

Shannon’s diversity index (
n

i
ii ppH

1
ln , where pi is the proportion of visits the focal pollinator pays to 

species i) can be used as a measure of specialisation, with high values indicating many plants being pollinated 
relatively evenly. By raising this value to the power of e we can compute the effective number of partners in 
units directly comparable to the number of plant species (Jost, 2006). 
2.7 d’-Index (quantitative measure)  
The rational for the d’-index was given by Blüthgen et al. (2006): “Hurlbert (1978) emphasized that not only 
proportional utilization, but also the proportional availability of each niche should be taken into account. A 
species that uses all niches in the same proportion as their availability in the environment should be considered 
more opportunistic than a species that uses rare resources disproportionately more.” The d’-index calculates a 
Shannon entropy-like diversity index of each pollinator’s visitation preferences, and then uses a heuristic 
search for the highest possible specialisation to determine the minimum specialisation possible under the 
constraints of observed plant and pollinator abundances. This, and the analytical solution for the minimum 
specialisation, are then used to re-scale the index to a range between 0 (perfect opportunist) and 1 
(disproportionate specialist). While d’ performed favourably on various data sets (Blüthgen et al., 2006), it is 
very sensitive for rare species, which either happen to visit a common plant (yielding a d’-value of 0) or a rare 
plant (yielding a d’-value near 1). 
 
3 Computation 
All indices can be calculated using the function “species level” in the R-package bipartite (Dormann et al., 
2009, Dormann et al., 2008). There are two more indices returned which do not measures specialisation but 
which also quantify the relationship between pollinators and plants: Fisher’s  (a measure of partner diversity, 
representing the parameter of Fisher’s logarithmic series fitted to the interactions of each species, see Fisher et 
al., 1943) and interaction balance (quantifying the asymmetry of interactions, i.e. if a pollinator is more 
specialised on the plants than the plants are, on average, specialised to this pollinator, see Vázquez et al., 2007). 
R-code for all analyses performed are available as supplementary material; data sets used below ship with the 
R-package itself and were taken from the NCEAS interaction web database maintained by Diego Vázquez 
(http://www.nceas.ucsb.edu/interactionweb). 

What is clear from the index descriptions is that they describe, intentionally or unintentionally, different 
characteristics of the plant-pollinator system. Qualitative descriptors give little information about the 
ecological and evolutionary processes, since they do not describe how common interactions between species 
are. Quantitative descriptors on the other hand do quantify ecologically directly interpretable characteristics. 
The index d’, for example, specifies a pollinator’s discriminatory behaviour: does it choose what is on offer or 
are there preferences beyond what it would encounter during random searches? Co-evolution between flowers 
and pollinators can only occur when the pollinator displays preferences, which the plant can then in turn try to 
amplify (through chemical attractors, flower structure or colour, and through “tailoring” reward types such as 
nectar or resin: e.g. Vega-Redondo, 1996, Fenster et al., 2006). The pollinator service index tries explicitly to 
quantify the benefit of a pollinator from the plant’s perspective. For them, a sufficiently high provisioning of 
the right type (i.e. conspecific) of pollen is of crucial importance. Thus, many pollinators not necessarily 
deposit enough of the right pollen (although pollination success often goes hand in hand with pollinator 
diversity: Kremen et al., 2002). 
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4 An Artificial Example 
In order to understand the different specialisation indices better, one can use an artificial network (Table 2), 
describing the visits of eleven pollinators to six plant species (a to f). They are arranged in a sequence from 
high to low specialisation. Within species with the same number of plant species visited (i.e. degree), the 
sequence is from those visiting rare plants to those visiting common plants. Pollinator S1c is clearly 
specialised, as are pollinators S4i and S3i. These latter two, however, have been observed only once, and the 
information on their preferences is hence uncertain: a single new visit can turn them from a specialist into a 
moderate generalist (compare S2r and S5r). Pollinators S2i and S4i are specialists, visiting only one plant 
species. Among those not visited by S2i is the plant species with the overall highest visitation rate (a). Thus, in 
the logic of the d’-index, we can consider S2i more specialised than S4i, because it avoids visiting a. 
Abundance effects can be investigated by species S7c and r. S7r has been observed fewer times than S7c, 
making its classification less certain. 
 
Table 2 Example pollination network. Columns represent pollinators, rows (lower case letters) the plant species they visit. 
Numbers refer to observed visitations. For pollinators, species are labelled by their specialisation (S1 to S7 from highly 
specialised to highly generalised) and by their abundance (common, intermediate, rare). The species S1c, S6c and S7c are 
common pollinators, with S1c being a common specialist, S6c more generalist but still clearly specialised, and with S7c a 
common generalist. Species S2 through 4 are also highly specialised, but along a gradient of plant attractiveness (S2 on a 
specialised plant, S3 on a moderately attractive plant and S4 on a highly attractive plant). S5r is similar to S2r (i.e. rare and 
interacting with a specialised plant), but with an additional observation to investigate the effect of sampling. S7c and S7r are both 
generalists, but differently common. In real pollination networks, this set-up is not uncommon: some plants are visited very often 
(a), some intermediate (b to f), and some hardly ever (g, h). Also pollinators are often log-normally distributed in their abundance. 

 S1c S2i S2r S3i S3r S4i S4r S5r S6c S7c S7r 
a 100 0 0 0 0 20 1 0 94 22 1 
b 0 0 0 20 0 0 0 0 3 21 1 
c 0 0 0 0 1 0 0 0 2 20 1 
d 0 0 0 0 0 0 0 0 1 19 1 
e 0 0 0 0 0 0 0 1 0 18 1 
f 0 20 0 0 0 0 0 0 0 0 0 
g 0 0 1 0 0 0 0 0 0 0 0 
h 0 0 0 0 0 0 0 1 0 0 0 

 
Table 2 gives the values for all 11 indices discussed above, along with the ranking they imply. Two patterns 

are apparent: Firstly, some indices (degree, BC, H) do not differentiate in specialisation between species with 
only one link (S1 to S4). Only strength, PSI and d’ are able to rank the majority of species unambiguously 
(bold printed values in Table 2 indicate non-ties). While this is to some extent an artefact of the evenly 
balanced number of interactions in this network, it is typical for networks with low sampling intensity and, of 
course, binary networks. 

 

 
Fig. 1 A matrix representation of the example network (left), the probability matrix based on marginal totals (centre) and a 
random matrix produced by the Patefield algorithm (right) (Patefield, 1981). Note that in either case column and row sums are 
the same as in the original (shading not comparable between panels). Dark shades represent many interactions (high probability 
in the case of the probability matrix). 
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Fig. 2 A binary (left) and weighted (right) depiction of the example network. Pollinators are given on top, plant species at the 
bottom. Species are sorted to minimum overlap of lines, leading to a centralisation of common species in each trophic level. 
Notice particularly the shift in pollination relevance of species S1c (gain) and S7r (loss).  
 
 
 

Second, the different indices do not identify the same species as most specialised. The setup of the network 
was in line with degree only. S4r was identified as comparatively generalised by three of the five weighted 
indices, while S7c was “promoted” to specialisation status similar to single-degree species. These results and 
Fig. 1 suggests that species S2i and S2r (both with only one link) are most extraordinary because their flowers 
are not visited by any other pollinator. Indeed, these two species receive the highest possible score by PSI and 
d’ and the lowest by closeness, thus indicating a high specialisation (Table 2). The most generalist species (S7c 
and S7r) have ties for all but three indices: strength, PSI and d’, again indicating limited sensitivity of most 
indices to quantitative differences between them. 

Species S2r and S5r were set up to illustrate the problem of singleton observations. S5r has a unique 
interaction (as has S2r), but with an additional non-unique one. As a consequence, it drops dramatically in 
virtually every index, indicating that all indices are liable to sampling intensity artefacts. The other 
construction in the example network is that of S2i, S3i and S4i compared to S2r, S3r and S4r. They are 
similarly specialised, but the first set are intermediately common species, the second rare. The only indices that 
actually report a difference between S2/3/4i and S273/4r are strength, PSI and d’ (strength and PSI yielding 
identical values in this case). 
 
5 Correlations Between Indices 
It is evident from the last section that the eight different specialisation indices partly quantify the same type of 
specialisation. To find out how much redundancy is present in the set of eight indices, I calculated for all 
pollinators the key eight specialisation indices and quantified their correlation in each of 21 pollination 
networks. Table 5 displays the correlation between indices and Fig. 3 ordinates their absolute values by 
similarity. NSI and closeness (CC) are grouped together, as are degree, betweenness (BC) and partner diversity 
(H). This graph suggests that two different properties of pollinators are measured, but these are not the two 
levels of specialisation alluded to in the introduction, i.e. number of plants visited (represented by degree, H, 
strength) and network position (NSI, BC, CC). Also the distinction between binary and weighted indices is not 
perfect, although likely to be responsible for the first axis. 
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Table 3 Indices of specialisation for the “pollinators” of the example matrix (Table 1). Degree, normalised degree, NSI, BC and 
CC are binary indices, while strength, PSI, partner diversity H, effective number or partners and d’ make use of the weighted 
information provided. Values printed in bold are unique within indices (all others are ties). “––” indicates that no value could be 
calculated (because these species form their own compartment). Superscripts indicate ranks with 1 for highest specialisation 
down to 11 for lowest. 
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S1c4.9  14 0.1254 1.384 0.0004.5 0.1106 0.427 0.426 0.004 14 0.336 
S2i3.1 14 0.1254 –– 0.0004.5 0.0001.5 1.003.5 1.001.5 0.004 14 1.001.5 
S2r3.1 14 0.1254 –– 0.0004.5 0.0001.5 1.003.5 1.001.5 0.004 14 1.001.5 
S3i3.8 14 0.1254 1.632 0.0004.5 0.0933.5 0.446 0.445 0.004 14 0.722 
S3r3.9 14 0.1254 1.632 0.0004.5 0.0933.5 0.0410 0.049 0.004 14 0.424.5 
S4i 5.5 14 0.1254 1.384 0.0004.5 0.1106 0.089 0.088 0.004 14 0.158 
S4r6.2 14 0.1254 1.384 0.0004.5 0.1106 0.0111 0.0111 0.004 14 0.0010 
S5r4.9 25 0.2505 1.632 0.0004.5 0.0847 1.052 0.534 0.696 26 0.693 
S6c5.9 46 0.5006 1.125 0.1799 0.1278 0.595 0.387 0.295 1.35 0.217 
S7c5.5 57.5 0.6257.5 1.006.5 0.41010.5 0.1369.5 3.201 0.623 1.617.5 4.997 0.424.5 
S7r8.1 57.5 0.6257.5 1.006.5 0.41010.5 0.1369.5 0.178 0.0310 1.617.5 58 0.089 

 
 
 
Table 4 Z-scores for the eight specialisation indices and the example network, based on 1000 replicate null model runs. Z-scores 
significantly different from null model values are printed in bold. (The critical value of |z| < 2 is only valid for normally 
distributed data, hence we counted the number of instances a null model had values larger or equal to the observed.) 

Pollinator Degree NSI* BC* CC Strength* PSI H d’ 
S1c –8.57 0.43 –5.85 5.33 –2.73 20.58 –12.57 35.39
S2i –4.19 NA –1.97 –33.34 1.70 54.53 –4.49 35.76
S2r 0.00 NA 0.00 –8.59 9.78 9.78 0.00 4.01
S3i –3.99 11.25 –1.93 –0.13 0.08 23.69 –4.25 25.70
S3r 0.00 2.53 0.00 0.99 0.34 0.34 0.00 1.44
S4i –4.02 7.23 –2.06 5.88 –1.06 0.79 –4.36 3.81
S4r 0.00 1.06 0.00 2.52 –0.23 –0.23 0.00 –0.69
S5r 0.82 5.48 0.39 –1.03 9.94 9.91 0.82 5.15
S6c –4.03 39.50 –0.06 11.21 –2.49 13.46 –9.81 19.48
S7c –2.37 –0.04 ǂǂǂ

ǂ
14.16 1.64 49.19 4.27 41.08

S7r 2.91 –0.96 5.27 15.87 0.33 0.02 2.29 0.55
* Z-scores cannot be meaningfully used to derive statistical significances due to substantial deviation from normal distribution  
of values (see Fig. 4). 
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Fig. 3 Non-parametric multidimensional scaling (nMDS) of the Pearson correlation matrix of the eight indices based on the 
analysis of 21 pollination networks. Axis 1 (largely dominated by the separation of binary and weighted indices) explains 54% of 
the variation, axis 2 (no interpretation) an additional 40%. Absolute correlation values were used since indices may be highly but 
negatively correlated. 
 
 
Table 5 Median correlation between indices across the 21 pollination networks. Upper triangle gives Pearson’s r (and 
interquartile range), lower triangle gives Kendall’s . Bold printed values are consistently significant (19 or more of the 21 
networks with significant correlations). 

 Species 
degree 

Strength Pollination 
Service 
Index PSI 

Node 
specialisation 
index 

Betweenness Closeness Partner 
diversity 

d’ 

Degree 1 0.780 
(0.123) 

0.500 
(0.234) 

-0.523 
(0.283) 

0.843 
(0.114) 

0.580 
(0.309) 

0.903 
(0.096) 

0.147 
(0.274) 

Strength 0.615 
(0.073) 

1 0.816 
(0.227) 

-0.260 
(0.384) 

0.505 
(0.326) 

0.214 
(0.321) 

0.641 
(0.179) 

0.385 
(0.318) 

PSI 0.480 
(0.200) 

0.872 
(0.115) 

1 -0.094 
(0.398) 

0.257 
(0.161) 

–0.049 
(0.396) 

0.406 
(0.301) 

0.699 
(0.200) 

NSI -0.536 
(0.176) 

-0.168 
(0.235) 

-0.043 
(0.247) 

1 –0.531 
(0.252) 

-0.998 
(0.453) 

-0.524 
(0.296) 

0.310 
(0.321) 

BC 0.857 
(0.198) 

0.499 
(0.176) 

0.320 
(0.245) 

–0.629 
(0.151) 

1 –0.540 
(0.209) 

0.699 
(0.176) 

–0.057 
(0.297) 

CC 0.583 
(0.217) 

0.142 
(0.268) 

–0.054 
(0.260) 

–0.993 
(0.113) 

0.647 
(0.182) 

1 0.551 
(0.290) 

–0.515 
(0.405) 

H 0.928 
(0.057) 

0.548 
(0.093) 

0.437 
(0.168) 

-0.498 
(0.175) 

0.794 
(0.215) 

0.555 
(0.231) 

1 0.102 
(0.335) 

d’ 0.140 
(0.229) 

0.596 
(0.344) 

0.706 
(0.259) 

0.221 (0.187) 0.003 
(0.262) 

–0.278 
(0.317) 

0.112 
(0.233) 

1 

Normalised degree is only a rescaled version of degree and hence has an r (and ) of 1 with degree. Similarly, effective number 
of partners is only a non-linearly rescaled version of partner diversity and hence has a  of 1 (but an r of 0.976).  
 
 
6 A null model for Specialisation 
Currently our expectations about which proportion of pollinators in a network should be specialised are very 
uninformed. Studies such as those by Oleson et al. (2007) or Martín Gonzáles et al. (2010) provide some ideas 
by classifying pollinators as well-connected (and hence generalists) or peripheral (and hence specialists). Fig. 
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4a depicts an attempt to quantify the distribution of specialisation according to the eight indices for an 
intensely sampled but still large pollination network (Memmott, 1999). It shows, again, that results are very 
different for the indices. Overall, all indices point towards a large proportion of specialists (i.e. many low 
values: see Table 1 for which values indicate specialisation), while the distribution of d’ (and PSI) -values 
indicates a very small proportion.  
 
 

 

 
Fig. 4 Distribution of index values across the 79 pollinators in the network of a) Memmott (1999) and b) a null model. Notice 
that most of the eight indices exhibit non-normal distributions, making the application of z-scores inappropriate. 
 
 

Such histograms cannot really identify specialists by themselves, because we do not know what a 
generalised pollination network with the same number of observations per species would look like. 
Furthermore, network dimensions (ratio of number of plants and pollinators) as well as sampling intensity 
(mean number of interactions per cell) have been shown to greatly affect network indices (Dormann et al., 
2009). A null model approach allows us to correct for such possible artefacts. 
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In a network, observed patterns of specialisation can have three causes: 1. “true” specialisation (Vázquez & 
Aizen, 2006); 2. competitive displacement (e.g. Aizen et al., 2008); and 3. chance. While 1 and 2 are 
impossible to disentangle without more data (e.g. from systems were the likely dominant competitor is absent), 
the null model approach seeks to avoid interpreting chance as specialisation (Blüthgen, 2010). Chance, in turn, 
can have various causes, and this null model approach focuses on two: a) artefacts due to low sampling 
intensity and b) intrinsic differences in flower attractiveness or abundance. 

For each pollinator, the null model scatters the observed number of interactions over all flowers. Across all 
pollinators, however, the number of visits to each flower is also kept at the observed value. Thus, column and 
row totals are kept constant. This null model is referred to as the Patefield algorithm (Patefield, 1981; Blüthgen 
et al., 2006). Note that this is a null model for quantitative (i.e. weighted) networks, not for qualitative (binary) 
ones. For binary networks, the approaches proposed by Miklós & Podani (2004) could be used (see also below 
for evaluation of binary indices, suggesting that binary matrices do not contain sufficient information to derive 
specialisation). 

One criticism of this null model is its conservatism. If flower abundance is driven by pollinator abundance, 
then the null model deletes the outcome of ecological interactions. How likely this is to be relevant we do not 
know. While pollen limitation as such has frequently been reported (reviewed in Knight et al., 2005, 2006), 
there is, as yet, little evidence that the abundance of flowers of a specific plant is affected by the number of 
visits from a specific pollinator (but see Kunin, 1993). If, however, another pollinator is able to replace and 
complement the target species, no abundance consequences are to be expected. 

While the evidence for specialisation-driven abundances is accumulating (Aguilar et al., 2006), the problem 
of over-interpretation is omnipresent without null model corrections (Vázquez and Aizen, 2006). Plant 
abundances are more likely to be limited by nutrients and water than by pollinators (Harper, 1977; Ghazoul, 
2005; Bos et al., 2007). Not subtracting mere sampling effects would lead us to interpret the fact that some 
plants are locally more abundant than others to be an indication of their specialisation. This whole dilemma 
can be summarised in one sentence: It is mere speculation to attribute abundance patterns to the structure of 
ecological networks, when it can be shown that a large proportion of these structures are sampling artefacts.  

How can we use null models to investigate whether an index mis-interprets random variation in an 
unspecialised pollinator as specialisation? An example for the network of Memmott (1999) is given in Fig. 4b. 
It shows that apart from NSI, its highly correlated counterpart CC and d’, all index distributions can be 
remarkably similar for real and null model networks. Thus, in order to formally test whether a given 
specialisation index value indicates specialisation or not, I generated 1000 null models for the example 
network (Figs. 1 and 2, Table 2) using the Patefield algorithm. These null models have the same number of 
observations per plant and pollinator species, but the interactions are spread randomly (obeying the marginal 
total constraints: Fig. 1). As a consequence, null model pollinators are extreme generalists. Z-scores (i.e. 
observed value – mean null model value, divided by the standard deviation of the null model values) indicate 
how clearly an index differentiates between observed values and null model values (see Table 4). 

In our example network (Table 1), species S7c and S7r are supposed to be generalists and were also 
classified as such by most indices (Table 3). The quantitative indices (notably PSI and d’) yielded relatively 
high values. When comparing the observed values to those of null models using z-scores (Table 4), only NSI, 
BC and strength are indistinguishable from the null model generalist, while all other indicate a significant 
amount of specialisation. Most indices quantified species S1c, S2i, S3i, S4i and S6c as specialists. PSI and d’ 
additionally show the intended sequence of discrimination from S2i, S3i to S4i by decreasing z-scores (because 
their recorded visits are less and less likely to occur by chance). Surprisingly, however, several more indices 
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picked up the increasing specialisation of the singletons S2r, S3r and S4r: CC, strength, PSI and d’. Here 
degree and H displayed their inability to extract meaningful information from singletons. 

Finally, the substantial change in z-scores of all binary indices (and H) from species S2r to S5r is also 
noteworthy. S5r was supposed to represent the same species as S2r, just with an additional, random interaction. 
The data do not allow much inference on species S2r, so the z-scores should not have changed much. Strength, 
PSI and d’ were indeed robust to this sampling effect, in stark contrast to the binary indices. 

 
7 Specialisation Calculations in a Real Network 
To illustrate which values we can expect in real networks, and how these relate to the observed interactions, I 
calculated the difference specialisation indices for the pollination network “Safariland” (Fig. 5).  
 

 
Fig. 5 Bipartite graph of the pollination network Safariland (Vázquez & Simberloff 2003). 

 
 

Different indices identify different species as specialists (Table 6). Species degrees are low (i.e. 1) for 18 out 
of 27 pollinator species, thus not allowing the identification of the most specialised pollinator. Chalepogenus 
caeruleus was most specialised according to both d’ and NSI, and Ichneumonidae4 according to PSI. Bombus 
dahlbomii had the highest strength value (but also high values for PSI and d’). 

Clearly, the Safariland pollinator network does not offer a single species as the obvious choice for the most 
specialised. Most of the above named species are plausible candidates. I regard Bombus dahlbomii as a 
particularly good candidate, simply because its commonness leaves little room for statistical artefacts (in 
contrast to the singleton Trichophthaloma amoena, for example). This subjective judgement is, however, only 
supported when using strength as the relevant measure. Species observed during very few flower visitations 
(e.g. less than 4) may suffer more from “incidental” identification as specialist.  
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Table 6 Specialisation index values for the pollinators of the Safariland pollination network (Vázquez & Simberloff 2003; Fig. 3). 
Values significantly different from null model values are printed in bold. Species are sorted by abundance from common to rare. 

Pollinator Degree NSI BC CC Strength PSI H d’ 
Policana albopilosa 1 0.000 0.031 1.87 0.852 0.852 0.00 0.691
Bombus dahlbomii 2 0.000 0.045 1.27 1.671 0.798 0.61 0.858
Ruizantheda mutabilis 2 0.048 0.036 1.64 0.539 0.153 0.20 0.155
Trichophthalma amoena 1 0.000 0.026 2.09 0.400 0.400 0.00 0.847
Syrphus octomaculatus 3 0.023 0.047 1.23 0.360 0.110 1.09 0.386
Manuelia gayi 1 0.000 0.045 1.27 0.034 0.034 0.00 0.320
Allograpta.Toxomerus 4 0.417 0.049 1.14 0.988 0.332 1.28 0.648
Trichophthalma jaffueli 1 0.000 0.045 1.27 0.014 0.014 0.00 0.265
Phthiria 2 0.000 0.045 1.27 1.038 0.145 0.35 0.392
Platycheirus1 2 0.244 0.050 1.09 0.010 0.005 0.50 0.000
Sapromyza.Minettia 1 0.000 0.045 1.27 0.005 0.005 0.00 0.200
Formicidae3 1 0.000 0.007 1.00 0.400 0.400 0.00 0.812
Nitidulidae 1 0.000 0.007 1.00 0.050 0.050 0.00 0.551
Staphilinidae 2 0.023 0.047 1.23 0.219 0.097 0.68 0.409
Ichneumonidae4 2 0.000 0.031 1.86 1.001 0.938 0.23 0.901
Braconidae3 1 0.000 0.007 1.00 0.100 0.100 0.00 0.617
Chalepogenus caeruleus 1 0.000 0.026 2.09 0.750 0.750 0.00 0.950
Vespula germanica 1 0.000 0.045 1.27 0.019 0.019 0.00 0.283
Torymidae2 1 0.000 0.007 1.00 0.450 0.450 0.00 0.832
Phthiria1 1 0.000 0.045 1.27 0.005 0.005 0.00 0.200
Svastrides melanura 1 0.000 0.045 1.27 0.029 0.029 0.00 0.308
Sphecidae 1 0.000 0.045 1.27 0.005 0.005 0.00 0.200
Thomisidae 1 0.000 0.045 1.27 0.005 0.005 0.00 0.200
Corynura prothysteres 2 0.244 0.050 1.09 0.016 0.011 0.56 0.121
Ichneumonidae2 1 0.000 0.045 1.27 0.019 0.019 0.00 0.283
Ruizantheda proxima 1 0.000 0.045 1.27 0.019 0.019 0.00 0.283
Braconidae2 1 0.000 0.031 1.86 0.001 0.001 0.00 0.000

 
 
8 An Argentinian Case Study: Effects of Cattle Grazing on Specialisation of Pollinators 
The indices and null model correction introduced in the previous sections can be used to investigate shifts in 
pollinator specialisation. For example, Vázquez and Simberloff (2003) report on the effect of cattle grazing on 
pollination network structure. We can use their data to quantify the specialisation of the common bumble bee 
Bombus dahlbomii across eight networks, four grazed and four ungrazed. This example shall demonstrate the 
approach one can take to correct the “raw” specialisation index for what a generalist pollinator of the same 
abundance would yield in the same network (the null model introduced earlier). 

The challenge is twofold: first, for each network, the raw specialisation index needs to be corrected relative 
to the null model generalist; second, using these corrected values, a test statistic must be computed to allow an 
inferential assessment of the difference between the two treatments. 

Fig. 6 shows, for all eight networks and all eight indices, the position of the observed value relative to the 
null model values. These represent random realisations of a perfect generalist. Hence, when the observed value 
is within the histogram of null model values, Bombus dahlbomii is classified as generalist (e.g. Fig. 6 
Safariland and strength). For most plots, the observed value is consistently on one side of the histogram, 
indicating consistent specialisation, but not so for BC, CC and strength. However, comparing these plots with  
those for a more obvious generalist, Vespula germanica (Fig. 7), we find few clear differences. From these 
data, we may thus want to generate different types of summary plots to elucidate further on grazing-induced 
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differences (Fig. 8): those of the raw data, those of difference between observed and mean null model values 
and z-scores. 

 
 

 
Fig. 6 Observed and null model specialisation values of Bombus dahlbomii for the analysis of specialisation shift. Red lines 
indicate observed value, histograms distribution of 1000 null models. These represent the position of a perfect generalist. Light 
grey indicates no grazing, dark grey grazed sites. Names of the data sets (on the left side of the panels) is according to their name 
in the bipartite package. 

 
 
These graphs (Fig. 8) can be read, for example for degree, like this: on grazed sites, B. dahlbomii seems to 

have a slightly higher number of links than on ungrazed sites (“raw”). This difference is amplified when 
correcting for the position of a perfect generalist (“diff”). Now it also becomes apparent that B. dahlbomii has 
fewer links than a generalist (and can hence be judged to be a specialist). However, when additionally taking 
into account the spread of values for a generalist (see also Fig. 6) the observed degrees cannot be distinguished 
between grazed and ungrazed sites (although they are still significantly specialised, set z/5). 

In particular the step from differences to z-scores usually has very strong effects because it incorporates the 
spread of null model values. In this example, only the BC index yielded a significant difference in z-scores (P 
= 0.026, based on an ANOVA with F-value distribution drawn from the analyses of the 1000 null models; see 
supplementary material for details and code). Here, Bombus dahlbomii in grazed sites had higher betweenness 
than those in ungrazed sites, indicating a decrease in specialisation with grazing. (A Bonferroni adjustment for 
the eight comparisons would render this finding insignificant, however.) 
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Fig. 7 Same as Fig. 6, but for Vespula germanica. This species is more general, being indistinguishable from a null model 
generalist in most networks and for most indices. Network “vazmasc” did not comprise this species and is hence omitted here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Specialisation index values of Bombus dahlbomii for grazed (dark grey) and ungrazed (light grey) sites. First two boxes 
represent the raw index values, as computed from the networks. The second pair represents corrected values, i.e. differences 
between raw values and the mean of the null models. They position the boxes relative to a perfect generalist (which would have a 
value of 0). The third pair is the z-scores (divided by a constant for more convenient comparison in the plots. 
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9 Specialisation Indices vs. Pollination Ecology: A Cautionary Remark 
This paper mainly deals with technical issues around the calculation of specialisation. Ecologically more 
important are probably behavioural differences within species. For example, individuals within a species may 
display very high levels of flower constancy, although the species as such is a generalist (e.g. Cakmak and 
Wells, 1994, Waser, 1986). This would yield much higher conspecific pollen deposition, making the species 
act as a specialist for many plant species. None of the above indices is able to capture such behaviour, nor are 
any of the many other indices proposed for ecological network analysis (e.g. Bersier et al., 2002, Dormann et 
al., 2009). Note, for example, that Bombus dahlbomii is actually reported in the literature as a generalist 
(Cooley et al., 2008, Abrahamovich et al., 2001), although in our analysis it receives very high specialist 
scores. Furthermore, virtually all analyses of pollination networks are based on observations of visitation, not 
of pollination events, and we should not over-interpret results based on visitation networks: Smooth skinned 
hoverflies may well be common flower visitors, but they are not on a par with bees in terms of pollination 
efficiency (Schittenhelm et al., 1997, but see Alarcón, 2010). It is largely unknown how much pollen is 
transferred, how much of it is conspecific pollen, and how much of that is viable.  

We should also not forget that pollination networks are not static, but rather highly dynamic (Petanidou et 
al., 2008). Inferences about a species based on only a single (or few) pollination networks will thus not 
represent the species’ adaptability. Finally, the interaction between pollinators and plants may appear to be 
strong, but rarely is (Waser, 2006). Apart from some well-documented examples of co-evolution (Lunau, 
2004), pollinators shift readily between plants when their abundance changes (e.g. Brown and Mitchell, 2001, 
Lopezaraiza-Mikel et al., 2007, Fründ et al., 2010), and most plant species have alternative, if usually less 
efficient, ways of sustaining a population (self-pollination and clonal growth, see, e.g., Kron et al., 1993). Thus, 
while specialisation indices may help us to get a better understanding of the role different species play within a 
network, such analyses alone will not be sufficient to deduce population-level consequences, both for plants 
and pollinators. To measure specialisation in an ecological meaningful way is not trivial, and the traditional 
plant-centred approach of visitation webs would profit from being complimented by pollinator-centred 
approach, such as analysis of pollen carried by the pollinator or provided to the brood. 
 
10 Conclusions 
Measuring specialisation in pollinators requires careful definition of what defines a specialist. As pollinator 
visiting only few plant species, degree and BC qualify as suitable indices. Strength adds the qualitative aspect 
to this question and is also less sensitive to singletons. For specialism viewed in a community context, as 
discrimination or minimum similarity to other pollinators, CC and d’ can be recommended, with the latter 
making use of quantitative data. When looking for a measure of specialisation that can be compared across 
networks, BC, PSI and d’ yield consistent trends when compared to null models. The discrimination index d’ is 
the only one where null models are not required, since it corrects for availability by its definition, making it a 
particularly suitable candidate for cross-network comparisons. Otherwise null models allow the positioning of 
the observed relative to a perfect generalist, and hence to statistically assess the significance of a specialisation 
value. In order to be able to select the “best” specialisation index for the question at hand, a clear definition of 
the required type of specialisation is indispensible. Ideally, this could be formulated as a model that generates 
networks with specialists. The index that picks up the intended specialist signal best would also be the best 
choice. 
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setwd("D:/Data/aktuell/BESS/R_FoodWeb/specialisation") 
require(bipartite) 
# REQUIRES BIPARTITE VERSION 1.11 (or higher)!! (before the species names are 
inconsistent and BC/CC incorrect) 
 
#-------------------- example network ------------------------------------------ 
exa <- matrix(0, 8,11) 
exa[1,] <- c(100, 20, 20, 0,0,0,0,0,0,0,0) 
exa[1:4,11] <- c(94,3,2,1) # as contrast to A 
exa[1:5,2] <- c(22,21,20,19,18) 
exa[2,4] <- 20 
exa[6,5] <- 20 
exa[1,6] <- 1 
exa[3,7] <- 1 
exa[7,8] <- 1 
exa[c(5,8),9] <- 1 
exa[1:5,10] <- 1 
exa <- exa[,c(1,5,8,4,7,3,6,9,11,2,10)] 
rownames(exa) <- letters[1:8] 
colnames(exa) <- paste("S", c("1c","2i","2r","3i","3r","4i","4r","5r","6c","7c","7r"), sep="") 
 
exa 
# plot network: 
windows(height=6, width=12) 
quartz(height=3, width=6) 
par(mfrow=c(1,2), mar=c(0,0,0,0)) 
plotweb(exa>0) 
plotweb(exa) 
require(sna) 
gplot(exa>0, gmode="twomode", vertex.cex=2) # plot as binary graph! 
gplot(as.one.mode(exa, weighted=F, project="higher")) # plot only the pollinator-projection 
 
# calculate indices for this network 
indices <- specieslevel(exa, index="ALLBUTD")$"higher trophic level"[,-4] 
write.table(round(indices[,c(1,2,5,6,7,3,4,9,10,11)], 3), file="exampleweb_indices.txt", sep="\t") 
indices.red <- indices[,-c(2,8,10)] 
 
#--------------------- run null models for example web ------------------------- 
# visualise the p-mat of the null model: 
pweb <- tcrossprod(rowSums(exa), colSums(exa)/sum(exa)) 
dimnames(pweb) <- dimnames(exa) 
visweb(exa, type="none") 
visweb(round(pweb*10000), type="none") 
 



# generate null models and calculate their index values: 
exanulls <- nullmodel(exa) 
ex1 <- exanulls[[1]];dimnames(ex1) <- dimnames(pweb) 
visweb(ex1, type="none") 
# this will take some minutes: 
exanull.res <- lapply(exanulls, function(x) specieslevel(x, index="ALLBUTD")$"higher trophic 
level"[,-c(2,4,9,11)]) 
save(exanull.res, file="exanulls.res.Rdata") 
 
# calculate z-scores: 
z.mat <- matrix(0, 11, 8) 
colnames(z.mat) <- colnames(indices)[-c(2,8,10)] 
rownames(z.mat) <- colnames(exa) 
for (i in 1:8){ 
  mean.n <- apply(sapply(exanull.res, function(x) x[,i]), 1, mean, na.rm=T) 
  sd.n <- apply(sapply(exanull.res, function(x) x[,i]), 1, sd, na.rm=T) 
  z <- (indices.red[,i] - mean.n)/ifelse(sd.n==0, 1, sd.n)  # sd is 0 when null model values are 
constant (i.e. mean.n==index);then the z-score should be 0 
  z.mat[,i] <- z 
} 
z.mat 
write.table(round(z.mat[,c(1,4,5,6,2,3,7,8)], 2), file="exampleweb_z.scores.txt", sep="\t") 
 
# calculate ROBUST z-scores: 
z.rob.mat <- matrix(0, 11, 8) 
colnames(z.rob.mat) <- colnames(indices)[-c(2,8,10)] 
rownames(z.rob.mat) <- colnames(exa) 
for (i in 1:8){ 
  median.n <- apply(sapply(exanull.res, function(x) x[,i]), 1, median, na.rm=T) 
  IQR.n <- apply(sapply(exanull.res, function(x) x[,i]), 1, IQR, na.rm=T) 
  z <- (indices.red[,i] - mean.n)/ifelse(sd.n==0, 1, sd.n)  # sd is 0 when null model values are 
constant (i.e. mean.n==index);then the z-score should be 0 
  z.rob.mat[,i] <- z 
} 
z.rob.mat 
write.table(round(z.rob.mat[,c(1,4,5,6,2,3,7,8)], 2), file="exampleweb_z.robust.scores.txt", 
sep="\t") 
 
# calculate p-values: 
# note that this is not entirely correct, because NAs will also lead to a p-value of 0! 
p.mat <- matrix(0, 11, 8) 
colnames(p.mat) <- colnames(indices)[-c(2,8,10)] 
rownames(p.mat) <- colnames(exa) 
for (i in 1:8){ 



  null.vals <- sapply(exanull.res, function(x) x[,i]) 
  p2 <- 1:3 
  for (j in 1:11){ # for each species, calculate the number of times the null model value was 
higher than the observed: 
    p.lower <- null.vals[j,] < indices.red[j,i] 
    p.higher <- null.vals[j,] > indices.red[j,i] 
    p.equal <- null.vals[j,] == indices.red[j,i] 
 sample.size <- NCOL(null.vals) - max(sum(is.na(null.vals[j,])), sum(is.na(p.lower)), 
sum(is.na(p.higher)), sum(is.na(p.equal))) 
 #p2[j] <- sum(p.higher)/sample.size 
    p2[j] <- (min(sum(p.lower, na.rm=T), sum(p.higher, na.rm=T))+sum(p.equal, na.rm=T)) / 
sample.size #turn this into probabilities, acknowleding possible NAs (in NSI!) 
  } 
#  p2 <- colSums(p, na.rm=T)/colSums(!is.na(p)) 
  p.mat[,i] <- p2 #ifelse(p2>0.5, 1-p2, p2)*2 #two-tailed test 
} 
p.mat 
round(p.mat[,c(1,4,5,6,2,3,7,8)], 3) 
 
 
#--------------------- calculate these indices for all webs -------------------- 
webs <-  data(package="bipartite")$results[,3] 
data(list=webs) 
 
res <- lapply(webs, function(x) specieslevel(get(x), index="ALLBUTD")$"higher trophic 
level"[,-4]) 
res 
save(res, file="allwebs_special_indices_obs.Rdata") 
load(file="allwebs_special_indices_obs.Rdata") 
 
#---------------------- calculate index correlations across webs --------------- 
 
index.cor.pearson <- index.cor.spear <- index.cor.ken <- array(NA, dim=c(11, 11, 21), 
dimnames=list(colnames(res[[1]]), colnames(res[[1]]), webs)) 
for (i in seq_along(res)){ 
  r <- res[[i]] 
  index.cor.pearson[,,i] <- cor(r, use="complete.obs", method="pearson") 
  index.cor.spear[,,i] <- cor(r, use="complete.obs", method="spear") 
  index.cor.ken[,,i] <- cor(r, use="complete.obs", method="ken")  
} 
index.cor.ken[,,5] 
hist(index.cor.pearson[7,5,]) # not always normally distributed 
# summarise in means and median 
 



#apply(index.cor.pearson, c(1,2), mean, na.rm=T) 
#apply(index.cor.pearson, c(1,2), sd, na.rm=T) 
apply(index.cor.pearson, c(1,2), median, na.rm=T) 
apply(index.cor.pearson, c(1,2), IQR, na.rm=T) 
 
outmat <- round(apply(index.cor.pearson, c(1,2), median, na.rm=T),3) 
outmat[lower.tri(outmat)] <- round(apply(index.cor.ken, c(1,2), median, 
na.rm=T),3)[lower.tri(outmat)] 
write.table(outmat, file="outmat.txt", sep="\t") 
outmatiqr <- round(apply(index.cor.pearson, c(1,2), IQR, na.rm=T),3) 
outmatiqr[lower.tri(outmat)] <- round(apply(index.cor.ken, c(1,2), IQR, 
na.rm=T),3)[lower.tri(outmat)] 
write.table(outmatiqr, file="outmatiqr.txt", sep="\t") 
 
 
cc <- apply(index.cor.pearson, c(1,2), median, na.rm=T) 
cc.red <- cc[-c(2,8, 10),-c(2,8,10)] 
par(mar=c(5,5,1,1)) 
plot(cmd <- cmdscale(1-abs(cc.red), k=2), type="n", xlab="axis 1", ylab="axis 2", tcl=0.5, 
cex.lab=1.5, las=1) 
text(cmd, c("degree", "strength", "PSI", "NSI", "BC", "CC", "H", "d"), cex=1.25, font=2) 
cmdscale(1-abs(cc.red), k=4, eig=T) 
 
.8120/sum(cmdscale(1-abs(cc.red), k=4, eig=T)$eig) 
.6073/sum(cmdscale(1-abs(cc.red), k=4, eig=T)$eig) 
 
#------------------- null models ----------------------------------------------- 
# Safariland 
saf <- specieslevel(Safariland, index="ALLBUTD")$"higher trophic level" 
write.table(round(saf[,c(1,7,8,6,3,5,10,12)],3), file="Safariland_indices.txt", sep="\t", quote=F) 
 
#------------------- null models ----------------------------------------------- 
nulls <- list() 
for (i in seq_along(webs)){ 
  nulls[[i]] <- nullmodel(get(webs[i])) 
} 
save(nulls, file="nulls.Rdata") 
 
## let's look at the specialisation values of an extreme specialist, Chalepogenus.caeruleus in 
Safariland (web 1): 
null.res.1 <- array(NA, dim=c(8, 27, 1000)) 
for (i in 1:1000){ 
  null.res.1[,,i] <- t(specieslevel(nulls[[1]][[i]], index="ALLBUTD")$"higher trophic 
level"[,-c(2,4,9,11)]) 



  print(i) 
} 
save(null.res.1, file="null.res.1.Rdata") 
 
null1.ind <- null.res.1[, 17, ] 
(res[[1]][17, -c(2,8,10)] - apply(null1.ind, 1, mean))/apply(null1.ind, 1, sd) 
#                               degree strength       PSI node.specialisation.index 
betweenness closeness partner.diversity   d 
#Chalepogenus.caeruleus      -1.372702 9.918387  41.17186                  19.00112   
-0.750377 -5.935758         -1.481948  15.7503 
 
praw <- rowSums(apply(null1.ind, 2, function(x) x > res[[1]][17, -c(2,8,10)])) / NCOL(null1.ind) 
(p.value <- ifelse(praw > 0.5, 1-praw, praw)) 
#[1] 0.243 0.003 0.000 0.000 0.243 0.000 0.243 0.000 
 
## let's look at the specialisation values of an extreme generalist, Corynura.prothysteres in 
Safariland (web 1): 
null1.ind <- null.res.1[, 24, ] 
(res[[1]][24, -c(2,8,10)] - apply(null1.ind, 1, mean))/apply(null1.ind, 1, sd) 
#                              degree   strength         PSI        NSI 
betweenness closeness partner.diversity         d 
#Corynura.prothysteres    0.004130498 -0.2206802  0.03651698  0.7250512    12.73813   
8.95974        0.03052268  1.203328 
praw <- rowSums(apply(null1.ind, 2, function(x) x > res[[1]][24, -c(2,8,10)])) / NCOL(null1.ind) 
(p.value <- ifelse(praw > 0.5, 1-praw, praw)) 
#[1] 0.218 0.389 0.209 0.166 0.000 0.000 0.322 0.109 
 
# the 8 indices for all pollinators in Safariland: 
write.table(signif(res[[1]][,-c(2,8,10)], 3), file="obs.vals.Safariland.txt", sep="\t") 
 
 
# now z-scores for all pollinators: 
z.scores <- matrix(NA, 8, 27) 
p.values <- matrix(NA, 8, 27) 
for (i in 1:27){ 
  null1.ind <- null.res.1[, i, ] 
  z.scores[,i] <- as.numeric(res[[1]][i, -c(2,8,10)] - apply(null1.ind, 1, mean, 
na.rm=T))/apply(null1.ind, 1, sd, na.rm=T) 
 
  praw <- rowSums(apply(null1.ind, 2, function(x) x > res[[1]][i, -c(2,8,10)])) / NCOL(null1.ind) 
  p.values[,i] <- ifelse(praw > 0.5, 1-praw, praw) 
 
  print(i)   
} 



 
#------------------------------------------------------------------------------- 
# d' distribution: 
data(memmott1999) 
ind.names <- c("degree", "NSI", "BC", "CC", "strength", "PSI", "H", "d'") 
ds <- dfun(t(memmott1999)) 
hist(ds$dprime) 
plot(density(ds$dprime, from=0, to=0.8), main="distribution of d' in Memmott 1999", las=1, 
tcl=-0.5, log="", xlim=c(0,1)) 
rug(ds$dprime) 
 
#require(MASS) 
#fitdistr(unname(ds$dprime), dbeta, list(shape1=2, shape2=2)) 
 
mem <- res[[7]][,c(1,5,6,7,3,4,9,11)] 
par(mfrow=c(2,4), mar=c(3,2.8,2,.2)) 
for (i in 1:8) hist(mem[,i], main=ind.names[i], col="grey80", las=1) 
mtext("a", side=3, line=-2, outer=TRUE, adj=0.02, cex=2, font=2) 
 
# same plot for one null model run: 
set.seed(42) 
mem.null <- nullmodel(memmott1999, 1)[[1]] 
mem.null.res <- specieslevel(mem.null, index="ALLBUTD")$"higher trophic 
level"[,-c(2,4,9,11)][,c(1,4:6,2,3,7:8)] 
par(mfrow=c(2,4), mar=c(3,2.8,2,.2)) 
for (i in 1:8) hist(mem.null.res[,i], main=ind.names[i], col="grey80", las=1) 
mtext("b", side=3, line=-2, outer=TRUE, adj=0.02, cex=2, font=2) 
 
#------------------------------------------------------------------------------- 
# specialisation shift: 
webs <-  data(package="bipartite")$results[,3] 
webs <- webs[c(1,15:21)] 
data(list=webs) 
 
specs <- NA 
for (i in 1:length(webs)){ 
 specs <- c(specs, colnames(get(webs[i]))) 
} 
sort(table(specs)) # two species in all 8 networks: Bombus dahlbomii and Syrphus octomaculatus 
 
# for Bombus dahlbomii calculate the 8 specialisation indices in all 8 networks: 
calc.ind <- function(web, focal.poll="Bombus dahlbomii") { 
  # helper function to calculate the specialisation indices only for Bombus dahlbomii 
  out <- specieslevel(web, index=c("degree", "NS", "BC", "CC", "strength", "PSI", "diversity", 



"d"))$"higher trophic level"[focal.poll,] 
  unlist(out) 
} 
ind.names <- c("degree", "NSI", "BC", "CC", "strength", "PSI", "H", "d'") 
vaz.obs <- t(sapply(webs, function(x) calc.ind(get(x)))) 
cattle <- c("grazed", "ungrazed")[c(2,1,1,2,2,1,2,1)]  #taken from V䐥 zquez & Simberloff 
(2003), Fig. 1) 
par(mfrow=c(2,4), mar=c(3,3,3,1)) 
for (i in c(1,4:6,2,3,7,8)) boxplot(unlist(vaz.obs[,i]) ~ cattle, main=ind.names[i], las=1, tcl=0.5, 
notch=FALSE, col="grey80") 
 
# now run the null models for these webs, adding another dimension of complexity: 
 
#null.array <- array(NA, dim=c(8,8,1000), dimnames=list(rownames(vaz.obs), colnames(vaz.obs), 
as.character(1:1000))) 
#for (i in webs){ 
#  web <- get(i) 
#  spec.index <- which(colnames(web) == "Bombus dahlbomii") 
#  null <- nullmodel(web, dim(null.array)[3]) 
#  null.vals <- sapply(null, calc.ind, focal.poll=spec.index) 
#  null.array[i,,] <- unname(null.vals) 
#} 
#save(null.array, file="vazquez_null.array.Rdata") 
load("vazquez_null.array.Rdata") 
 
z.mat <- vaz.obs - apply(null.array, c(1,2), mean) /apply(null.array, c(1,2), sd) 
 
matrix(rowSums(apply(null.array, 3, function(x) x > vaz.obs)), 8,8, byrow=F) 
 
## make a panel plot depicting the 64 combinations of networks and indices, nullmodels vs. 
observed 
# make the plot window LARGE (at least A4)! 
windows(width=15, height=10) 
par(mfrow=c(8,8), mar=c(2,2.8,1,0.5), oma=c(0,2.5,2.8,0)) 
 
for (i in c(1,4,6,8,2,3,5,7)){#loop through the 8 sites, ungrazed first 
  for (j in c(1,4:6,2:3,7:8)){# loop through the 8 indices 
     xlims <- range(c(null.array[,j,], vaz.obs[,j]), na.rm=T)*c(0.9, 1.1) 
#    xlims <- range(c(null.array[i,j,], vaz.obs[i,j]), na.rm=T)*c(0.9, 1.1) 
    hist(null.array[i,j,], col={if(i %in%c(1,4,6,8)) "grey80" else "grey40"}, las=1, main="", 
xlim=xlims)#paste(ind.names[j], rownames(z.mat)[i])) 
    abline(v=vaz.obs[i,j], col="red", lwd=2) 
  } #grazed sites are dark grey, ungrazed light grey 
} 



mtext("degree", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12, adj=1) 
mtext("NSI", side=3, line=0, outer=T, cex=1.5, font=3, at=0.11*2, adj=1) 
mtext("BC", side=3, line=0, outer=T, cex=1.5, font=3, at=0.115*3, adj=1) 
mtext("CC", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*4, adj=1) 
mtext("strength", side=3, line=0, outer=T, cex=1.5, font=3, at=0.123*5, adj=1) 
mtext("PSI", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*6, adj=1) 
mtext("H", side=3, line=0, outer=T, cex=1.5, font=3, at=0.119*7, adj=1) 
mtext("d'", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*8, adj=1) 
 
mtext("Safariland", side=2, line=0, outer=T, cex=1, font=1, at=8*0.125, adj=1) 
mtext("vazllao", side=2, line=0, outer=T, cex=1, font=1, at=7*0.121, adj=1) 
mtext("vazmasnc", side=2, line=0, outer=T, cex=1, font=1, at=6*0.124, adj=1) 
mtext("vazquenc", side=2, line=0, outer=T, cex=1, font=1, at=5*0.123, adj=1) 
mtext("vazarr", side=2, line=0, outer=T, cex=1, font=1, at=4*0.12, adj=1) 
mtext("vazcer", side=2, line=0, outer=T, cex=1, font=1, at=3*0.122, adj=1) 
mtext("vazmasc", side=2, line=0, outer=T, cex=1, font=1, at=2*0.124, adj=1) 
mtext("vazquec", side=2, line=0, outer=T, cex=1, font=1, at=0.122, adj=1) 
 
# now we examine the effect of grazing on the raw specialisation indices: 
obs.data <- cbind.data.frame(cattle, vaz.obs) 
colnames(obs.data) 
 
# Next, we calculate the difference between the observed and the perfect generalist (i.e. mean of 
null models): 
windows(width=12.5, height=8) 
par(tcl=0, mar=c(3,3,1,1), mfrow=c(2,4)) 
 
# degree:------------------------- 
index = "species.degree" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/5 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
abline(h=0) 
axis(side=2, at=seq(-6,6,by=2), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/5", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("bottomleft", "degree", bty="n", cex=2, inset=c(-0.05,-0.025)) 
legend("topright", c("ungrazed", "grazed"), col=c("grey80", "grey20"), pch=15, bty="o", cex=2) 



 
# NSI:----------------------------- 
index = "node.specialisation.index" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/20 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
axis(side=2, at=c(0,0.5,1,1.5,2,2.5), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/20", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("topleft", "NSI", bty="n", cex=2, inset=c(-0.05,-0.05)) 
 
# BC:----------------------------- 
index = "betweenness" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/100 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
abline(h=0) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6), add=T) 
axis(side=2, at=seq(0,0.3,by=0.1), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/100", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("topleft", "BC", bty="n", cex=2, inset=c(-0.05,-0.05)) 
 
# CC:----------------------------- 
index = "closeness" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/100 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 



boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
abline(h=0) 
axis(side=2, at=seq(0,0.15,by=0.05), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/100", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("topleft", "CC", bty="n", cex=2, inset=c(-0.05,-0.05)) 
 
# strength:---------------------------------- 
#par(tcl=0, mar=c(3,3,1,1))#, mfrow=c(2,4)) 
index = "strength" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs) 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
abline(h=0) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6), add=TRUE) 
axis(side=2, at=c(-4,-2, 0,2), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("bottomleft", "strength", bty="n", cex=2, inset=c(-0.05,0)) 
 
# PSI:---------------------------------- 
#par(tcl=0, mar=c(3,3,1,1))#, mfrow=c(2,4)) 
index = "Pollination.Service.Index.PSI" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/100 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
axis(side=2, at=c(0,0.5,1,1.5,2,2.5), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/100", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 



legend("topleft", "PSI", bty="n", cex=2, inset=c(-0.05,-0.05)) 
 
# partner.diversity:---------------------------------- 
#par(tcl=0, mar=c(3,3,1,1))#, mfrow=c(2,4)) 
index = "partner.diversity" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/20 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
abline(h=0) 
axis(side=2, at=seq(-1,1,by=0.5), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/20", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("topright", "H", bty="n", cex=2, inset=c(0.05,-0.05)) 
 
# d':---------------------------------- 
#par(tcl=0, mar=c(3,3,1,1))#, mfrow=c(2,4)) 
index = "d" 
diffs <- obs.data[,index] - rowMeans(null.array[,index,]) 
zs <- (obs.data[,index] - rowMeans(null.array[,index,])) / apply(null.array[,index,], 1, sd) 
zs <- ifelse(is.infinite(zs), NA, zs)/100 
#plot all 3: 
data2plot <- cbind(cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(1,4,6,8),], 
cbind(raw=obs.data[,index], diff=diffs, z=zs)[c(2,3,5,7),]) 
boxplot(data2plot, at=c(1,3,5,1.8,3.8,5.8), col=rep(c("grey80", "grey20"), each=3), las=1, 
names=rep("", 6)) 
axis(side=2, at=c(0,0.5,1,1.5,2,2.5), tcl=0.5, labels=FALSE) 
mtext("raw", side=1, line=0.75, outer=F, at=1.4, font=2, cex=1.5) 
mtext("diff", side=1, line=0.75, outer=F, at=3.4, font=2, cex=1.5) 
mtext("z/100", side=1, line=0.75, outer=F, at=5.4, font=2, cex=1.5) 
legend("topleft", "d'", bty="n", cex=2, inset=c(-0.05,-0.05)) 
 
 
 
# The problem is that the specialisation index values are affected by the network properties (such 
as number of species, sampling intensity, etc.). Thus, we need to calculate a corrected value (e.g. 
the z-score). Or, we explore the t-statistic between the two grazing types but compute the 
significance level from the null model. This latter approach is also usable for nonnormally 
distributed data, using Fisher's signed rank test, rather than the t-test. 



obs.t.PSI <- t.test(obs.data$Pollination.Service.Index.PSI[obs.data$cattle=="grazed"], 
obs.data$Pollination.Service.Index.PSI[obs.data$cattle=="ungrazed"], var.equal=F)$statistic 
null.t.PSI <- apply(null.array[, 3, ], 2, function(x) t.test(x[obs.data$cattle=="grazed"], 
x[obs.data$cattle=="ungrazed"])$statistic) 
plot(density(null.t.PSI)); abline(v=obs.t.PSI, col="red") 
sum(null.t.PSI > obs.t.PSI) # 25 
# this means that the observed difference statistics is significantly higher than would be expected 
for a generalist 
 
obs.degree.dev <- anova(glm(species.degree ~ cattle, family=poisson, data=obs.data), 
test="Chisq")$Deviance[2] 
obs.NSI.F <- anova(lm(node.specialisation.index ~ cattle, data=obs.data))$"F value"[1] 
obs.BC.F <- anova(lm(betweenness ~ cattle, data=obs.data))$"F value"[1] 
obs.CC.F <- anova(lm(closeness ~ cattle, data=obs.data))$"F value"[1] 
obs.strength.F <- anova(lm(strength ~ cattle, data=obs.data))$"F value"[1] 
obs.PSI.F <- anova(lm(Pollination.Service.Index.PSI ~ cattle, data=obs.data))$"F value"[1] 
obs.H.F <- anova(lm(partner.diversity ~ cattle, data=obs.data))$"F value"[1] 
obs.d.F <- anova(lm(d ~ cattle, data=obs.data))$"F value"[1] 
# none of the indices hints at a change in specialisation of Bombus dahlbomii under change in 
grazing 
 
# use nullmodels to get a F-value distribution: 
dimnames(null.array)[1:2] 
 
null.degree.dev <- apply(null.array[, 1, ], 2, function(x) anova(glm(x ~ cattle, family=poisson, 
data=obs.data))$Deviance[2]) 
sum(null.degree.dev > obs.degree.dev) #150 
null.NSI.F <- apply(null.array[, 4, ], 2, function(x) anova(lm(x ~ cattle, data=obs.data))$"F 
value"[1]) 
sum(null.NSI.F > obs.NSI.F) #964 
null.BC.F <- apply(null.array[, "betweenness", ], 2, function(x) anova(lm(x ~ cattle, 
data=obs.data))$"F value"[1]) 
sum(null.BC.F > obs.BC.F) #987 
null.CC.F <- apply(null.array[, "closeness", ], 2, function(x) anova(lm(x ~ cattle, 
data=obs.data))$"F value"[1]) 
sum(null.CC.F > obs.CC.F) #943 
null.strength.F <- apply(null.array[, "strength", ], 2, function(x) anova(lm(x ~ cattle, 
data=obs.data))$"F value"[1]) 
sum(null.strength.F > obs.strength.F) #131 
null.PSI.F <- apply(null.array[, 3, ], 2, function(x) anova(lm(x ~ cattle, data=obs.data))$"F 
value"[1]) 
sum(null.PSI.F > obs.PSI.F) #975 
null.H.F <- apply(null.array[, 7, ], 2, function(x) anova(lm(x ~ cattle, data=obs.data))$"F 
value"[1]) 



sum(null.H.F > obs.H.F) #893 
null.d.F <- apply(null.array[, 8, ], 2, function(x) anova(lm(x ~ cattle, data=obs.data))$"F 
value"[1]) 
sum(null.d.F > obs.d.F) #686 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# this is nothing new: it repeats the analysis of Bombus for a different species: 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
webs <-  data(package="bipartite")$results[,3] 
webs <- webs[c(1,15:21)] 
data(list=webs) 
 
specs <- NA 
for (i in 1:length(webs)){ 
 specs <- c(specs, colnames(get(webs[i]))) 
} 
sort(table(specs)) # two species in all 8 networks: Bombus dahlbomii and Syrphus octomaculatus 
# We pick a third one here, Vespula germanica, which is present in 7 of the 8 networks. 
 
# for Vespula germanica calculate the 8 specialisation indices in all 8 networks: 
calc.ind <- function(web, focal.poll="Vespula germanica") { 
  # helper function to calculate the specialisation indices only for Vespula germanica 
  out <- specieslevel(web, index=c("degree", "NS", "BC", "CC", "strength", "PSI", "diversity", 
"d"))$"higher trophic level"[focal.poll,] 
  unlist(out) 
} 
ind.names <- c("degree", "NSI", "BC", "CC", "strength", "PSI", "H", "d'") 
vaz.obs <- t(sapply(webs, function(x) calc.ind(get(x)))) 
cattle <- c("grazed", "ungrazed")[c(2,1,1,2,2,1,2,1)]  #taken from V䐥 zquez & Simberloff 
(2003), Fig. 1) 
par(mfrow=c(2,4), mar=c(3,3,3,1)) 
for (i in c(1,4:6,2,3,7,8)) boxplot(unlist(vaz.obs[,i]) ~ cattle, main=ind.names[i], las=1, tcl=0.5, 
notch=FALSE, col="grey80") 
 
# now run the null models for these webs, adding another dimension of complexity: 
 
#null.array <- array(NA, dim=c(8,8,1000), dimnames=list(rownames(vaz.obs), colnames(vaz.obs), 
as.character(1:1000))) 
#for (i in webs){ 
#  web <- get(i) 



#  spec.index <- which(colnames(web) == "Vespula germanica") 
#  if (length(spec.index) == 0){ 
#    null.array[i,,] <- matrix(NA, 8, 1000) 
#  } else { 
#    null <- nullmodel(web, dim(null.array)[3]) 
#    null.vals <- sapply(null, calc.ind, focal.poll=spec.index) 
#    null.array[i,,] <- unname(null.vals) 
#  } 
#  print(i) 
#} 
#save(null.array, file="vazquez_Vespula.germanica_null.array.Rdata") 
load("vazquez_Vespula.germanica_null.array.Rdata") 
 
z.mat <- vaz.obs - apply(null.array, c(1,2), mean) /apply(null.array, c(1,2), sd) 
 
matrix(rowSums(apply(null.array, 3, function(x) x > vaz.obs)), 8,8, byrow=F) 
 
## make a panel plot depicting the 64 combinations of networks and indices, nullmodels vs. 
observed 
# make the plot window LARGE (at least A4)! 
windows(width=15, height=10) 
par(mfrow=c(7,8), mar=c(2,2.8,1,0.5), oma=c(0,2.5,2.8,0)) 
for (i in c(1,4,6,8,2,3,7)){#loop through the 8 sites, ungrazed first 
  for (j in c(1,4:6,2:3,7:8)){# loop through the 8 indices 
    xlims <- range(c(null.array[,j,], vaz.obs[,j]), na.rm=T)*c(0.9, 1.1) 
    hist(null.array[i,j,], col={if(i %in%c(1,4,6,8)) "grey80" else "grey40"}, las=1, main="", 
xlim=xlims)#paste(ind.names[j], rownames(z.mat)[i])) 
    abline(v=vaz.obs[i,j], col="red", lwd=2) 
  } #grazed sites are dark grey, ungrazed light grey 
} 
mtext("degree", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12, adj=1) 
mtext("NSI", side=3, line=0, outer=T, cex=1.5, font=3, at=0.11*2, adj=1) 
mtext("BC", side=3, line=0, outer=T, cex=1.5, font=3, at=0.115*3, adj=1) 
mtext("CC", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*4, adj=1) 
mtext("strength", side=3, line=0, outer=T, cex=1.5, font=3, at=0.123*5, adj=1) 
mtext("PSI", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*6, adj=1) 
mtext("H", side=3, line=0, outer=T, cex=1.5, font=3, at=0.119*7, adj=1) 
mtext("d'", side=3, line=0, outer=T, cex=1.5, font=3, at=0.12*8, adj=1) 
 
mtext("Safariland", side=2, line=0, outer=T, cex=1, font=1, at=7*0.14, adj=1) 
mtext("vazllao", side=2, line=0, outer=T, cex=1, font=1, at=6*0.14, adj=1) 
mtext("vazmasnc", side=2, line=0, outer=T, cex=1, font=1, at=5*0.14, adj=1) 
mtext("vazquenc", side=2, line=0, outer=T, cex=1, font=1, at=4*0.14, adj=1) 
mtext("vazarr", side=2, line=0, outer=T, cex=1, font=1, at=3*0.14, adj=1) 



mtext("vazcer", side=2, line=0, outer=T, cex=1, font=1, at=2*0.14, adj=1) 
#mtext("vazmasc", side=2, line=0, outer=T, cex=1, font=1, at=2*0.124, adj=1) 
mtext("vazquec", side=2, line=0, outer=T, cex=1, font=1, at=0.14, adj=1) 


