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Abstract 

Species distribution models have become a commonplace exercise over the last 10 
years. Still, analyses differ a lot due to different traditions, aims of applications 
and statistical background knowledge. In this chapter, I lay out what I consider to 
be the most crucial steps in a species distribution analysis: data pre-processing and 
visualisation, dimensional reduction (incl. collinearity), model formulation, model 
simplification, model type, assessment of model performance (incl. spatial auto-
correlation) and model interpretation. For each step, the most relevant consider-
ations are discussed, mainly illustrated with Generalised Linear Models and 
Boosted Regression Trees as the two most contrasting methods. In the shorter sec-
ond part, I draw attention to the three most challenging problems in species distri-
bution modelling: identifying (and incorporating into the model) the factors that 
limit a species’ range; separating the fundamental, realised and potential niche; 
and niche evolution. 

Introduction 

As species of all types undergo rapid human-induced extinction, understanding 
why species occur where they do is becoming a highly relevant, pressing and po-
tentially life-saving topic. Conservation actions, such as establishing protected site 
networks, adapting land use, providing stepping-stone habitats all require an idea 
of how the target species will respond. Also using organisms as “bioassay”, i.e. 
indicators of environmental trends (such as climate change, air pollution, overfish-
ing) demands an intimate knowledge of the organism’s niche. Species distribution 
modelling attempts to identify the probable causes of species whereabouts. We 
seek to delineate the realized niche of an organism based on its current distribution 
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with respect to the environment (see Elith and Leathwick 2009b for definitions 
and concepts; Guisan and Thuiller 2005; Kearney 2006; Soberón 2007).  

Why Species Distribution Modelling? 

There are several fundamental challenges to this approach (e.g. first and foremost 
that it is correlative; see Vaughan & Ormerod (2005) and Dormann (2007b) for a 
recent critique), and before jumping into the analysis, it is worth considering 
whether SDMs are actually useful and fit for the purpose of your specific problem. 
For example, at very small spatial scales, differences in environmental conditions 
may be too small to be of predictive value and biotic interactions (competition, 
predation) may be of crucial importance. At the global scale, in contrast, data be-
come so coarse that we “only” model the climate niche and specific habitat re-
quirements cannot be detected.  

On the other hand, SDMs try to extract ecological information from a species 
occurrence pattern when and where it matters. Expert knowledge usually cannot 
inform us which trait or limitation will be relevant for our problem at hand. We 
may know that a palm tree does not survive sub-zero temperatures, but the ob-
served distribution will tell you that even 10 x 10 km grid squares with minimum 
temperatures well below 0°C harbour this species because of microclimatically 
suitable places. Thus, at the spatial resolution under investigation, the physiologi-
cal threshold can be misleading even though it may be true. Overall, SDMs are 
useful for complementing existing approaches in at least these five areas of re-
search: 

1. Small-extent, decision-support for conservation biology (such as Biological 
Action Plans: Zabel et al. 2003, and numerous others); 

2. testing specific hypotheses, e.g. on the spatial scale of habitat selection (Graf et 
al. 2005; Mackey and Lindenmayer 2001), the species-energy hypothesis 
(Lennon et al. 2000) or range-size effects on diversity pattern (Jetz and Rahbek 
2002); 

3. generating hypotheses, e.g. on correlation of species  traits  with  environmental  
variables (Kühn et al. 2006), which can then be tested experimentally;  

4. identifying hierarchies of environmental drivers (Bjorholm et al. 2005; Borcard 
and Legendre 2002; Pearson et al. 2004);  

5. prospective design of surveys, e.g. optimizing sampling schemes for rare spe-
cies (Guisan et al. 2006). 

Now, we shall focus on the technical side, and assume that you know what you 
are doing, ecologically speaking. 

Analyzing the geographic distribution of species’ occurrence, abundance or di-
versity is, essentially, a statistical task. As such, the fundamental ideas and princi-
ples of good statistics apply (and can be found in the excellent but advanced book 
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of Hastie et al. 2008). There are three reasons, at least, why methods for describ-
ing or modeling these patterns have reached a higher level of sophistication than 
many other field in ecology. Firstly, biogeographical data sets are nowadays large 
(both in terms of number of data points and potentially explanatory variables), ne-
cessitating the use of new statistical strategies. Secondly, species distribution data 
typically carry a largish bunch of common intrinsic statistical problems and ac-
cordingly several solution were tailored to these problems (presence-only data, 
low information content of binary data, spatial autocorrelation, multi-collinearity, 
model unidentifiability). Thirdly, species distribution modeling (SDM) is “sexy”. 
As habitat of many species is constantly lost, as climate changes and as environ-
mental management becomes a matter of human survival, scientists, decision 
makers and the general public look for information and predictions of possible fu-
ture scenarios. In consequence, substantial funding (at least for ecological topic) 
over the last decade has enabled talented scientists to make a career from SDMs. 

Aims of this chapter 

The recent developments have made the field of SDM somewhat complex, divers 
and confusing for the newcomer. The aim of this chapter is thus to (1) provide a 
recipe for SDM; (2) briefly discuss a few selected “hot” topics; and (3) give an 
outlook to challenges of a more ecological modeling type (dispersal, occupancy, 
biotic interactions, functional variables, evolution, changing limiting resources). I 
shall restrict citations to fundamental or specific methodological papers and will 
therefore have to ignore the vast amount of good ecological papers that “only” did 
it right. On the other hand, I am not aware of any paper on species distribution 
modeling that could tick all elements of the recipe below. 

A Species Distribution Modeling recipe 

A good cook needs no recipe. Alas, we are more trained in ecology than statistics. 
Moreover, without the right ingredients (a.k.a. data) and tools (software), no dish 
will be tasty. Also, I should mention other recipes along this line: see Harrell 
(2001) for a generic statistical recipe, and Pearson (2007) and Elith & Leathwick 
(2009a; 2009b) for a specific one on SDMs. As for “cooking tools”, I highly rec-
ommend using code-based software so that each step of the analysis is docu-
mented and easily reproducible. The functions mentioned in this chapter are all 
from the free R environment for statistical programming (R Development Core 
Team 2009). 

The recipe falls into three section: pre-processing, modelling and model inter-
pretation (Fig. 1). These sections are somewhat arbitrary but useful to structure the 
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whole endeavor. We shall assume that you have your ingredients well prepared: 
The observed data are as good as we need them, the explanatory variables are 
ecologically relevant and at the same resolution and your statistical tools are laid 
out in front of you. A worked example is available online (Where’s the sperm 
whale?), which follows the recipe and provides example data and R-code. 

 

Fig. 1. Overview of the species distribution modelling workflow. The three phases contain vari-
ous tasks, for which typical examples are given in the right column. 

Pre-processing and visualization 

The response variable 

When the data are presence-absence (i.e. binary) no further preparation is needed. 
When data are counts or continuous, we have to make sure that assumptions of the 
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modeling approach are met. For parametric modelling approaches (regressions by 
means of GLM or GAM), count data are usually assumed to be Poisson distributed 
but all too often are not. Continuous responses are generally assumed to be nor-
mally distributed. These assumptions can be checked only after modeling, because 
we need to look at the residuals or compare log-likelihoods of different distribu-
tions. Generally, if too many zeros have been observed, the data are over-
dispersed and we have to resort to one of three alternative approaches: a quasi-
Poisson distribution (where over-dispersion is explicitly modeled); a negative bi-
nomial distribution (where similarly a clumping parameter is fitted); or a separate 
analysis of zeros and non-zeros (as in zero-inflated or other mixed distribution 
models: Bolker 2008). Sometimes people log-transform count data (more pre-
cisely: y’ = log(y+1)), and find the new y’ to be normally distributed. 

Normally (Gaussian) distributed data show a normal distribution in the model 
residuals and a straight 1:1 relationship in a QQ-plot of these residuals. Deviations 
need to be accounted for, e.g. by transforming the data (any good introductory 
textbook, such as Quinn & Keough (2002), will feature a section on transforma-
tions, including useful the Box-Cox1 transformation). 

When we have presence-only data (i.e. only locations where a species occurs 
but no information where it does not), two alternative approaches are available. 
We could use purpose-build presence-only methods, or we could use all locations 
without a presence and call them absences (pseudo-absences). Both approaches 
have their difficulties (Brotons et al. 2004; Pearce and Boyce 2006). The first suf-
fers from a lack of sound methods (in fact, following e.g. Tsoar et al. (2007) and 
Elith & Graham (2009), I would currently only recommend MaxEnt2 in this direc-
tion and hope for the approach of Ward et al. (2009) to become publically avail-
able). The second approach lacks simulation tests on how to select pseudo-
absences and how to weight them (see Phillips et al. (2009) for the cutting edge in 
this field), although it has been argued that the pseudo-absence approach can be as 
good or better than the purpose-build presence-only methods (Zuo et al. 2008). In 
what follows, I only consider presence-(pseudo)absence data. 

The explanatory variables 

Also explanatory variables may require transforming! Consider a relevant ex-
planatory variables which is highly skewed (e.g. log-normally distributed), as is 
commonly the case for land-use proportions. Some few high-value data points 
may completely dominate the regression fitted. To give a more balanced influence 
to all data points, we want the values of the predictors to be uniformly distributed 
over their range. This will rarely be achievable, and mostly researchers settle for a 

                                                             
1 boxcox in MASS (typewriter and bold are use to refer to a function and its R-
package) 
2 Phillips et al. (2006b):  http://www.cs.princeton.edu/~schapire/maxent/ 
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more or less symmetric distribution of the predictor. Note, however, that ideally 
we want most data points where they help most. For a linear regression, the mean 
is always best described, so we would want most data points at the lowest and 
highest end of the range. For a non-linear function, for example a Michaelis-
Menton-like saturation curve, we want most data points in the steep increase, 
while there is little gained from many points at the high end, once the maximum is 
reached. As a rule of thumb we need many data points where a curve is changing 
its slope. 

Transformation of explanatory variables is needed particularly for regression-
type modeling approaches such as GLM and GAM (see below for explanation). 
Regression trees (used, e.g., in Boosted Regression Trees, BRT, or randomForest) 
are far less sensitive, if at all (Hastie et al. 2008). It is a good custom to make a 
histogram of each explanatory variable before entering it into an analysis! Trans-
formation options are the same as for the response. 

Missing data are a (very) special case of transformation. Although generally 
disliked by many analysts, imputation (replacement of missing data) is often a 
good idea (see Harrell 2001), particularly if missing data are scattered through the 
data set (i.e. across several variables!) and we would loose many data points if we 
simply omitted every data point with missing values. Standard imputation uses the 
other explanatory variables to interpolate a likely value for the missing one3. Re-
placement by mean is not an option! 

“Outliers” are (in general) a red herring: If there is no methodological reason 
why a data point is extremely high (e.g. one data set being recorded in winter, 
while all other data points are from the summer), then this datum should also be 
included in the analysis. Otherwise the data set may be poorly sampled, but the 
“outlier” would still represent a (potentially) valuable datum. It would be good 
practice to omit it later on and see if the results are robust to this omission. Fur-
thermore, in multi-dimensional data sets (i.e. those with several explanatory vari-
ables), a datum might be an “outlier” in one dimension, but a ordinary data point 
in all others: why delete it? 

Finally, all continuous variables should be standardized before the analysis4. 
This reduces collinearity, particularly with interactions (Quinn and Keough 2002). 
As a convenient side effect, regression coefficients are now directly comparable: 
the larger their absolute value, the more important is this term in the model (they 
become standardized regression coefficients). 

Collinearity 

Collinearity refers to the existence of correlated explanatory variables. Some pre-
dictors are only proxies for an underlying, latent variable. For example, consider 
                                                             
3 transcan and aregImpute in Hmisc 
4 scale 
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temperature and rainfall, which are largely governed by distance to ocean (ocean-
ity), altitude and regional terrain. Collinear predictors can lead to biased models 
due to inflated variances (Quinn and Keough 2002). There are many cures to this 
ailment, but no remedy. Logically speaking, if two predictors are tightly linked to 
an underlying (but elusive) causal variable, there is no way to find out which is the 
“correct” predictor for our analysis. We may choose precipitation over tempera-
ture when modelling plants (or the other way around for insects), but there is no 
guarantee that this choice allows us a sensible extrapolation of our model. Also us-
ing Principal Component Analysis (PCA) or any of the other tailor-made methods 
for collinearity (Partial Least Squares, penalized regression, latent root regression, 
sequential regression, and many others) will not solve the ecological problem, 
only the statistical. These methods will produce either a new data set of uncorre-
lated variables, or “consider” the correlation when estimating model parameters. 

So where is the problem? Imagine an organism whose distribution is governed 
entirely by its sensitivity to frost. When we combine our climate variables into one 
or more principal components, model the species’ distribution, and then predict to 
a climate change scenario, the fact that both rainfall and mean summer tempera-
ture are correlated with number of frost days will dilute its impact in the model. 
The total effect of “frost” is distributed over all correlated variables. As a conse-
quence, any climate prediction will underestimate the effect of frost and hence 
yield a “wrong” expected future distribution. If we don’t know the true underlying 
causal mechanism, no statistics can help us here (or at least very little). Any eco-
logical knowledge used in variable pre-selection, however, will lead to a smaller 
bias in scenario projections! 

Dimensional reduction 

Often we may have dozens or even hundreds of potential explanatory variables 
(e.g. from multispectral remote sensing or landscape metrics). We should try to 
reduce this set too as few as possible for two reasons: (1) The more variables we 
have, the more they will be correlated. (2) The more variables we have, the more 
likely one of them will spuriously contribute to our model (type I error). For 
SDMs, Austin (2002) and Guisan & Thuiller (2005) argue that we should choose 
“resource” over “direct” and “direct” over “indirect” variables. For example, the 
abundance of prey (hardly ever available) or nesting opportunities will be a re-
source variable when analyzing the distribution pattern of a bird of prey. Tempera-
ture or human disturbance could be direct variables, impacting on the bird without 
moderation by other variables. Indirect variables would be altitude or length of 
road in a grid cell, which are substitutes, surrogates or proxies for other, more di-
rectly acting variables. These indirect variables are often not immediately perceiv-
able by the organism (such as altitude by a plant or length of road verges by a ro-
dent). So if we have two (correlated) variables, we should discard the one “further 
away” from the species’ ecology. 
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If we are unable to reduce the data set sufficiently (i.e. k >> N), we should use 
dimensional reduction techniques, such as Principal Component Analysis5 or its 
more sophisticated variants that also allow categorical variables (nMDS6). The 
scores for the most important axes in this new parameter hyperspace can be used 
as explanatory variables. Note that interpretation is often extremely impaired by 
automatic dimensional reductions. It is thus always advisable to use ecological 
understanding rather than statistical functions at this step! 

An alternative is to “filter” the data by importance. We can use a robust and 
able technique to tell us which variables are important. Next, we use only those 
five or 12 variables filtered from the initial pool of variables, and continue. Re-
gression-tree based methods are very useful for this, and I recommend random-
Forest and Boosted Regression Trees. If you plan to model your data with BRT 
anyway, there is little point in reducing the data before. 

Finally, be aware that any model can only find correlations with the variables 
provided. Of course we know that our hypothetical bird of prey depends on spe-
cific prey. Without this information, we may actually be modelling the niche of 
the prey, not of the predator! 

Exploratory data plotting 

Can we finally start? No! It is both good practice and highly advisable to look at 
the data by plotting them in any reasonable combination conceivable (see, e.g., 
Bolker 2008). Plot thematically related explanatory variables as scatterplot7 to de-
tect collinearity. Plot each explanatory variable against the response (henceforth 
called X and y, respectively) and look for non-linear effects. Plot y against two Xs 
(Fig. 2) and a hull-polygon around the data to see that 40% or so of the parameter 
space is not in your data set. This is the area outside the convex hull in fig. 2. The 
more variables (and hence dimensions) your data set has, the more severe this 
problem becomes. It is so prominent among statisticians (though not among ecolo-
gists) that it is referred to as the “curse of dimensionality” (Bellman 1957; Hastie 
et al. 2008). Repeat this plotting for any number of variables. Getting a feeling for 
the data is crucial, and many later errors can be avoided. Every minute invested at 
this stage saves hours later on. 

                                                             
5 prcomp 
6 isoMDS in MASS or, more conveniently, metaMDS in vegan 
7 pairs 
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Fig. 2. Visualizing the parameter space supported by data. In this case, the top-right and bottom-
left corner of the parameter space of the two predictors has not actually been sampled by data 
(despite a low correlation of r = –0.26). The actually sampled parameter space, indicated by the 
convex hull covering 57% or the area, declines dramatically with the number of dimensions 
(“curse of dimensionality”). In other words: we have few data points to look at interactions of 
higher order. 

Modelling 

Here, we arbitrarily divide the process of deriving a “useable” model into two 
steps. The first, model building, selects the variables to be included, the type of 
non-linearity and order of interactions considered, and the criteria for selecting the 
final complexity of a model. The second step, model parameterization, does the 
final step of using the data to calculate the best estimates for variable effects. It is 
this model that we want to use for interpolation, hypothesis testing or extrapola-
tion. Note that in some methods these two steps are implicitly taken care of and 
that there is no two-step process (mainly machine learning, where model selection 
is done internally through cross-validation in order to prevent models from being 
“unreasonably” large: e.g. Hastie et al. 2008). For more traditional approaches 
(and here I am thinking of GLMs), we may want to have these steps functionally 
separated. 
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Model formulation 

We have reduced our data set to a moderate size of predictors in the step “Dimen-
sional reduction” above. Now we still need to specify in which functional form in 
which the predictors are allowed to correlate with the response. In early years, 
both non-linear and interactive model terms were neglected, making many of their 
findings less trustworthy. Modern methods (such as BRT) will automatically have 
non-linearity and interactions build-in. It is still important to understand the rele-
vance of non-linearity and interactions, even when using the tree-based methods, 
because we still have to be able to interpret the results. The information on the im-
portance of a variable often returned by machine-learning algorithms does not al-
low us to see how the variables act. As shown in the case study (see online appen-
dix: Where’s the sperm whale?), the functional relationship must be plotted to 
gage its shape. For interactions we need to plot each variable at each level of the 
other variable, thus visualizing synergistic or compensatory effects of the two 
variables. 

The key idea hind SDM, i.e. the environmental niche of a species, implies a 
hump-shaped relationship between any environmental predictor and a species’ oc-
currence: there are lower and upper limits. Hence, we must allow the model to be 
non-linear. If we happen to only sample a part of the entire gradient, we also need 
to consider saturation curves, which are again non-linear. The simplest, and gener-
ally sufficient, way to include non-linearity is by generating a new, squared 
dummy variable for each continuous predictor8. This represents the third element 
of a Taylor series (which can be expanded to represent any function). When using 
GAM or other spline-based approaches, non-linearity is governed by the smooth-
ing function used. Here the issue is not so much how to model non-linearity, but 
rather how much non-linearity we allow for. Reducing the “wiggliness” of splines 
(either by stepwise model selection for the number of knots in each predictor9 or 
by shrinkage of spline fits10) prevents overfitting and should be the standard ap-
proach. 

Interactions are similarly relevant. Statistically, an interaction is the product of 
the participating main effects. Ecologically, it means that we need to know the 
value of all variables included in the interaction, not only the main effects. Be-
cause this is highly relevant and often difficult for the beginner, let me briefly give 
an example. Assume that global patterns of plant diversity are well-predicted by 
the predictors “annual precipitation” and “mean annual temperature” – and their 
interaction. For the main effects, wet or hot means more species, but not necessar-
ily. When a site is hot, it needs to also be wet to have high species richness; oth-

                                                             
8 This can be done either manually (X1.2 <- X1^2) or as part of the model formula (y ~ X1 
+ I(X1^2)); higher-order polynomials should be specified using poly (y ~ poly(X1, 
degree=3)), which calculates orthogonal polynomials. 
9 As is proposed for the function gam in package gam: see ?gam::step.gam 
10 As proposed for the function gam in package mgcv: see ?mgcv::step.gam. 
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erwise it may well be a barren desert. But when cold, a site will never support 
many plant species, independent of precipitation. In this example, neither tempera-
ture nor rainfall alone is sufficient to predict species richness at any site, but we 
need to interpret them in concert. 

Classification and regression trees (CARTs) embrace non-linearity and interac-
tions in an elegant and natural way. Their boosted (BRT) or bagging (randomFor-
est) extensions hence do not require specification of non-linearity and interactions. 

Model simplification 

One of the fundamental problems in building statistical models is the trade-off be-
tween the variance explained by the model, and the bias it produces when validat-
ing it on a new, independent data set (variance-bias-trade-off: Hastie et al. 2008). 
Smaller models are more robust, i.e. less biased, at the expense of being not very 
good in explaining variance. The way to derive the “optimal” model size is 
through cross-validation (CV). For some modelling approaches this is automati-
cally implemented, but the majority of model types require the user to carry out 
this step11. N-fold cross-validation encompasses a random assignment of data 
points to the N subset, with N usually between 3 and 10. Care should be taken to 
have equal prevalence in all subsets, e.g. by randomizing 0s and 1s separately 
(stratified randomization). The model is then fitted to N–1 of the N subsets and 
evaluated on (by predicting to) the remaining subset. This is repeated for all N 
subsets and evaluations are averaged. Based on these values, we can select the 
best modelling strategy (both model complexity and model type). An alternative 
approach is to bootstrap the entire model building process and use bootstrapped 
measures of model performance. Since a bootstrap requires several thousand runs, 
and a CV only a few, CV is far more common. 

Information theoretical approaches are based on analytical methods to describe 
this CV. Hence Akaike’s Information Criterion (AIC) or Schwartz’/Bayesian In-
formation Criterion (BIC) are implicitly also based on cross-validation. While it is 
clear that too large a model will be overfitting, and that too small a model will not 
capture as much of variation as it should in the data, the “true” model will always 
remain elusive, and our “optimal” model will only be a caricature of the truth. 
There is much to be learned from this caricature, however! 

Model type 

                                                             
11 Do not confuse out-of-bag model weights and alike with cross-validation of the entire model. 
When data are held back during the building of sub-models (e.g. in randomForest or BRT), this 
does not represent a cross-validation of the entire model (i.e. the average of sub-models). 
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At this point we have to choose one (or more) method(s) to do our analysis with. 
The good “traditional” approaches comprise Generalised Linear Models (GLM) 
and Generalised Additive Models (Guisan and Zimmermann 2000). Discriminant 
Analysis has been given up on, as have been Neural Networks and CARTs 
(Guisan and Thuiller 2005). “Modern” approaches are often based on either multi-
dimensional extensions of GAMs (such as MARS and SVM) or machine-learning 
variations of CART (such as BRT and randomForest: Hastie et al. 2008). Anyone 
using a machine-learning method should familiarize himself with this method. The 
majority of them are performed on real data set, where the truth is unknown and 
the performance of a method hence assess by cross-validation. These comparisons 
show, broadly speaking, that model types differ sometimes dramatically in per-
formance, that each model type can be misused and that both GLM and BRT are 
reliable methods when used properly.  

This is not the place to explain the differences between all of them (see Hastie 
et al. (2008) for a recent and comprehensive description or Elith & Leathwick 
(2009a)). It has to suffice to make clear the main difference in the machine-
learning approach to “traditional” statistical models. In traditional models (e.g. 
GLM), we specify the functional relationship between the response and its predic-
tors. So, for example, we decide to include precipitation as a non-linear predictor 
for plant species richness. This model proposal is then fitted to the data. In ma-
chine learning, we propose only the set of predictors, but not the model structure. 
Here, an algorithm builds a model proposal, fits it to a part of the data set and 
evaluates its performance on the other part of the data. It then proposes a modifi-
cation of the original model and so forth. Machine-learning algorithms12 differ in 
scope, origin, complexity, speed, but they all share this validation step which is 
used to steer the algorithm towards a better model formulation. There are plenty of 
studies comparing different modelling approaches (Guisan et al. 2007; Meynard 
and Quinn 2007; Pearson et al. 2006; Segurado and Araújo 2004). Rather, we shall 
continue using GLM and BRT as representatives for the two most common good 
approaches. 

The choice of model type has much to do with availability of software, current 
fashion and of course with the specific aim of the study. Further complications 
arise if the design of the survey may require a mixed model approach (e.g. due to 
repeated measurements or surveys split across observers), if spatial autocorrelation 
needs to be addressed, if zero-inflated distributions have to be employed, and if 
corrections for detection probability shall be modeled. The more additional re-
quirements are imposed on the model, the more GLMs become the sole possible 
method13. Alternatively, you may want to go for a Bayesian SDM (see Latimer et 
al. 2006, for a primer). 

                                                             
12 http://www.machinelearning.org/ is a good place to start exploring this field 
13 Most of these “complications” can be handled by standard extensions of GLMs {see, e.g., 
\Bolker, 2008 #8207, and various dedicated R-packages). They will, however, make the model 
less stable, require larger run-times and still rely on getting the distribution right. There is, of 
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If your data and model require an unusual combination of steps (say a combina-
tion of zero-inflated data with nested design and spatial autocorrelation, while 
predictors are highly correlated and many values missing), and you develop a way 
to cook this dish, then you should do (at least) two things: Firstly, evaluate your 
method for its ability to detect an effect that you know is there (“power”). Sec-
ondly, evaluate your method for its sensitivity to detect effects that you know are 
not there (“type I error”). Both evaluation should be amply replicated, should be 
based on simulated data (so that you know the truth) and should (finally) confirm 
that your new methods is reliable! 

Spatial Autocorrelation 

Spatial autocorrelation (SAC) refers to the phenomenon that data points close to 
each other in space are more alike than those further apart. For example, species 
richness in a given site is likely to be similar to a site nearby, but very different 
from sites far away. This is mainly due to the fact that the environment more simi-
lar on short distance. Hence, SAC in the raw data (species richness) is a conse-
quence of SAC in the environment (topography, climate), something Legendre 
(1993) termed “spatial dependence”. In SDMs, we do not care about SAC per se, 
but about SAC in the model’s residuals (i.e. unexplained by the environment), be-
cause it distorts model coefficients (Bini et al. 2009; Dormann 2007a). To date it 
is unclear whether this residual SAC is mainly due to model misspecifications 
(omission of non-linearity and interactions), due to variation in sampling cover-
age, due to omission of important predictors or due to ecological processes (terri-
toriality, dispersal). Only against some of these problems can statistical solution 
be found. The spatial toolbox is rich in approaches (Beale et al. 2010; Carl et al. 
2008; Dormann et al. 2007; Mahecha and Schmidtlein 2008). In any case, SDM 
residuals should be investigated for spatial autocorrelation, and attempts should be 
made to correct for it. If spatial models yield similar coefficient estimates (GLM) 
as non-spatial models, then there seems to be little value in “going spatial”: the 
ranges of the spatial autocorrelation may or may not be related to the ecological 
scale of movement or behavioral patterns (Betts et al. 2009; Dormann 2009). 

Tweaking the model 

There are several ways in which to increase the quality of the model (Maggini et 
al. 2006). One important start is to investigate the model residuals. They indicate 

                                                                                                                                            
course, the alternative of Bayesian implementations. Since these are also fundamentally maxi-
mum likelihood approaches, they are similar to sophisticated GLMs. In any case, there is no 
Bayesian Boosted Regression Tree (not to speak of a combination with spatial terms and mixed 
effects). It runs against the Bayesian philosophy to use boosting or bagging, and there is no effi-
cient implementation either. 



14  

whether model assumptions were violated (e.g. when residuals are highly skewed 
or their variance is not the same throughout the range of fitted values) or if some 
non-linear relationship went unnoticed (residuals may e.g. show a hump-shaped 
trend against fitted values).  

Model diagnostics14 will also indicate outliers, i.e. data points that have a high 
influence on the model coefficients. We can use weights to decrease an outlier’s 
impact. Weights are also useful when the balance between presences and absences 
is very disturbed. Down-weighting the more common category so that model 
weights sum to the same value for 0s and 1s has been shown to increase the sensi-
tivity of binomial models (Maggini et al. 2006). The same approach is recom-
mended when using pseudo-absences (Elith and Leathwick 2009a). 

By including data from other scales or broader geographic coverage, regional 
or local SDMs can be improved, too. Pearson et al. (2004) used European distribu-
tion and climate data to fit a niche model for four plant species. Predicted prob-
abilities of occurrence from this model were then used as input variable alongside 
land-cover variables in the second-step model for the UK. Thereby the authors 
obviated the problem that the climate gradient in the UK is much shorter than of 
the species’ global distribution. 

Assessing model performance 

To quantify how good our model fits the data, we compare model predictions with 
field data (usually on a hold-out sample, e.g. the subset of a cross-validation). 
Traditionally, the probability predictions from the model were converted into 
presences and absences and then a confusion matrix can be used to calculate vari-
ous parameters of choice (e.g. commission and omission error, kappa, etc: 
Fielding 2002). The AUC (“area under curve”) is currently the most commonly 
used measure of discriminatory power of a model. Its value (between 0.5 for ran-
dom and 1 for perfect) quantifies the ability of the model to put the data points 
into the correct class (i.e. presence or absence), independent of the threshold re-
quired by the other measures mentioned. It has recently received justified criticism 
because its values are not comparable across different prevalences (and the 
criticism extends to kappa, too: Lobo et al. 2008). Currently, misclassification 
rates, commission and omission errors are more en vogue again, because they can 
be intuitively interpreted. Furthermore, by assigning different weights to false 
negatives (omission error) and to false positives (commission error), conservation 
management can come to more sophisticated and balanced decisions (Rondinini et 
al. 2006). 

Only rarely will a second set of data be available to investigate the qual-
ity of our model(s) through external validation. A different recording strategy, an-
other time slice or data from a different geographic location represent really inde-
                                                             
14 Diagnostics for GLMs fitted in R are given by plotting the model object. 
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pendent data, and could thus be considered an external validation. The internal 
validation (described above as cross-validation) is an optimistic assessment of 
model quality. When using SDMs to infer underlying mechanisms, external vali-
dation is less of an issue than when using them to extrapolate to a future climate or 
other sites. Because the cross-validated models are optimistic, they give narrower 
error bands than they should.  

Interpretation 

Once we have arrived at what we regard as a final model, we should make any ef-
fort to understand what it means. A first and most relevant step is to visualize the 
functional relationships within the model. The plot of how occurrence probability 
is related to, say, annual precipitation should be accompanied by a confidence 
band around this line. It may be useful to plot the data as rug into this figure to 
visualize the support at each point in parameter space (Fig. 3).  

 

 

Fig. 3 Functional relationship between an environmental variable and a binary response. Rug 
(ticks on lower axis) indicate for which x-values data were available. Lines represent a quadratic 
fit (solid) and its standard deviation (dashed). Thin grey line is the true, underlying, data-
generating function. Note the few data points upon which the declining half of the function is 
based (6 of a total of 50 have a value > 0.35). 
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For interactions, visualization becomes more difficult. Two-way interactions 

can still be plotted (e.g. as a 3-D plot or as a contour plot). No confidence bands 
can be included, though. Here it is again very important to indicate the position of 
the samples to identify regions of the parameter space that have not been sampled. 
For higher dimensions, or for model that average across many sub-models, we can 
do the same plots (called marginal plots for main effects then, because they repre-
sent the marginal changes to a predictor, averaging across all other predictors). We 
can also slice through higher dimensions, i.e. calculate a marginal plot for specific 
values of other predictors (often their median).  

Spending time plotting is again well invested. We will detect errors in the 
model, scratch our head over inexplicable (and hence overly complex) patterns, 
and be forced to extract the main conclusions from it. It is this phase where the 
traditional GLM is superior to the BRT, because variable interpretation is easier. It 
is, however, also this phase where we may realize that BRTs are superior to GLMs 
because they can model step-changes and thresholds much better. Personally, I 
think we should not publish patterns we do not understand. There is, as the previ-
ous steps have shown, several decisions that could generate artifacts and their pub-
lication cannot be seen as progress. 

Beyond recipes: new challenges for species distribution models 

The above recipe can be used to derive a static description of environmental corre-
lates with distribution data. But they often leave the analyst unsatisfied. Many as-
sumptions can be suspected to be violated (Dormann 2007b), such as stationarity, 
unbiased coverage, or equilibrium with environment15. Three key challenges are to 
do with the following problems of current SDMs: (1) A niche model describes the 
current niche, and it is unclear which factors will be limiting elsewhere or in the 
future. (2) Climate change projections delimit only the potential future distribu-
tion, and it is unclear whether the species will ever fill this new range, e.g. due to 
dispersal constraints. And, (3), our understanding of the adaptive potential of a 
species is currently very poor. This sets, in part, the research agenda for species 
distribution models. Let us look at these challenges in more detail. 

                                                             
15 Actually, the term “equilibrium” is a bit misleading. What is meant is that the entire width of 
its niche is filled. Within this niche, there may well be unoccupied sites, e.g. due to metapopula-
tion dynamics. A problem arises, when a species does not occupy say the dry end of its soil 
moisture niche for historic reasons. Then the estimate of this end of the niche will be biased. 



17 

What limits a species’ range? 

An organism is constrained in its population dynamics by resources, competitors, 
predators and diseases, density dependence, reproductive opportunity, mutualists, 
environmental stochasticity and so forth (e.g. Krebs 2002). The same holds true 
for its spatial distribution (e.g. Gaston 2009; Holt and Barfield 2009), but addi-
tionally spatial constraints come into play (e.g. distance between habitat frag-
ments, minimum territory size, Allee effects due to low population density). With 
an SDM, we are usually only able to quantify some of these limitations, and, ac-
cordingly, SDMs often do not transfer very well to other sites (Schröder & Richter 
1999, Randin et al. 2006, Duncan et al. 2009, but see Herborg et al. 2007). In par-
ticular biotic interactions are hardly ever quantified explicitly within SDMs (al-
though some of them will also correlate with the environmental data used). But 
they matter in real data (e.g. Preston et al. 2008; Schweiger et al. 2008), and they 
impact model performance and predictive ability (as shown, in a simulation study, 
by Zurell et al. 2009). It is thus a key challenge to incorporate biotic interactions 
into SDMs, but to date such attempts are far and few between (e.g. Bjornstad et al. 
2002). A recent review (Thuiller et al. 2008) indicates some avenues to do so, but 
all of them are based on the explicit modelling of populations within cells, if not 
individuals. It is unclear, how to derive a more general dynamic SDM without 
spending years per species on incorporating detailed ecological knowledge.  

Fundamental, potential and realized niches 

The reason why many biogeographers refer to SDMs as "Species Distribution 
Models" and not as "niche models" is because they do not believe that we model 
the niche of the target species. In fact, as Jiménez-Valverde et al. (2008) argue, 
because we do not know why a species is absent in some sites, we are in the dark 
about its niche. The discussion of what a niche is, and what we are modeling, has 
sparked several interesting and not always compatible publications (e.g. Kearney 
2006; Soberón 2007). Hence, Araújo & Guisan (2006) have named the “clarifica-
tion of the niche concept” the first of five challenges for SDMs. While we cannot 
resolve this issue here, it is important to realize that the “niche” based on the cor-
relation between geographic distributions and environmental conditions is quite a 
bit more vague than the niche discussed in evolutionary ecology, where resources 
and other causal drivers are envisaged (see, e.g., Losos 2008). 

More to the point in this context is the challenge to quantify how much of the 
fundamental niche is actually covered by the realized niche as extracted from 
SDMs. If, on one extreme, the realized niche is pretty much also the fundamental 
niche (i.e. there are no biotic interactions and alike to constrain the distribution at 
the scale we are analyzing), then we can merrily predict future distributions of this 
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species (e.g. under climate or land-use change). At worst, we are overestimating 
the future, “potential” distribution (if in the future biotic interactions may become 
limiting or if species do not reach the sites). At the other extreme, if the funda-
mental niche is considerably wider than what we model, any projection can be 
fundamentally flawed (Dormann et al. 2010). I am not aware of any study assess-
ing the overlap of realized and fundamental niche for geographic distributions (see 
also Nogués-Bravo 2009). It could require transplant experiments into areas be-
yond the current range and the manipulation of biotic interactions there. The few 
studies going into this direction point at a large discrepancy between fundamental 
and realized niche. Battisti et al. (2006), for example report on a range shift after a 
particularly warm summer, which was not reverted afterwards, indicating that it 
was dispersal limitation that prevented a filling of the niche. Similarly, several 
studies point at the importance of dispersal limitation (Nekola 1999; Ozinga et al. 
2005; Samu et al. 1999; Svenning and Skov 2004), leading to both a bias in the 
modeled environment-occurrence relationship as well as the width of the niche it-
self. There is, as yet, no standard way to wed SDMs and dispersal (see Johst et al. 
2002; King and With 2002; Lavorel et al. 2000; Lischke et al. 2006; Midgley et al. 
2006; Schurr et al. 2007, for attempts; Thuiller 2004).  

Niche evolution 

Another important and fast developing field related to species distribution model-
ling is the study of niche evolution. I shall use this term very loosely, as is often 
done, to also include micro-evolutionary changes, genetic (and ecological) drift 
within species and genotypic plasticity (Pfenninger et al. 2007). Climate change 
projections using SDMs rely on the assumption that species are not able to adapt 
significantly to altering environmental conditions. This assumption is implicit in 
the extrapolation of the fitted niche: if a species was able to adapt rapidly, then the 
present niche would not be related to its future niche. 

The problem is that we have considerable, if patchy, evidence that niches can 
rapidly evolve (reviewed in Thompson 1998), change within the fundamental 
niche (Dormann et al. 2010) or at least that variability within a species is large 
enough to allow it to shift its niche when confronted with novel environments (e.g. 
Ackerly et al. 2006; Broennimann et al. 2007; Hajkova et al. 2008; Holt 2003; 
Holt and Gaines 1992). There is, as yet, no synthesis of niche evolution nor, to my 
knowledge, any mechanistic approach to incorporate geno- and phenotypic plas-
ticity into SDMs or spatial population models. There is, on the other hand, more 
than anecdotal evidence that microevolutionary processes are at play and matter 
ecologically (Hampe and Petit 2005; Phillips et al. 2006a). Hence, this field still 
awaits being embraced by species distribution models. 
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Concluding remarks 

This chapter tries to strike a balance between guidance for novices to species dis-
tribution modeling – by providing a recipe for the most crucial elements of SDMs 
– and an embedding of SDMs into the currently most relevant statistical chal-
lenges. Analyzing a species’ distribution can be a very useful starting point for 
further investigations or process-based modeling attempts. The correlative nature 
of modelling in general, and species distribution modelling specifically, should 
always be remembered. Tempting as it may be to incorporate a lot of ecological 
knowledge into mechanistic or statistical models, only little of this information 
will actually be relevant at the focal scale. The main intellectual challenge re-
mains to not over-interpret one’s findings and to seek independent corroboration. 
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