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Abstract. Sophisticated statistical analyses are common in ecological research, particu-
larly in species distribution modeling. The effects of sometimes arbitrary decisions during the
modeling procedure on the final outcome are difficult to assess, and to date are largely
unexplored. We conducted an analysis quantifying the contribution of uncertainty in each step
during the model-building sequence to variation in model validity and climate change
projection uncertainty. Our study system was the distribution of the Great Grey Shrike in the
German federal state of Saxony. For each of four steps (data quality, collinearity method,
model type, and variable selection), we ran three different options in a factorial experiment,
leading to 81 different model approaches. Each was subjected to a fivefold cross-validation,
measuring area under curve (AUC) to assess model quality. Next, we used three climate
change scenarios times three precipitation realizations to project future distributions from
each model, yielding 729 projections. Again, we analyzed which step introduced most
variability (the four model-building steps plus the two scenario steps) into predicted species
prevalences by the year 2050. Predicted prevalences ranged from a factor of 0.2 to a factor of
10 of present prevalence, with the majority of predictions between 1.1 and 4.2 (inter-quartile
range). We found that model type and data quality dominated this analysis. In particular,
artificial neural networks yielded low cross-validation robustness and gave very conservative
climate change predictions. Generalized linear and additive models were very similar in quality
and predictions, and superior to neural networks. Variations in scenarios and realizations had
very little effect, due to the small spatial extent of the study region and its relatively small
range of climatic conditions. We conclude that, for climate projections, model type and data
quality were the most influential factors. Since comparison of model types has received good
coverage in the ecological literature, effects of data quality should now come under more
scrutiny.

Key words: artificial neural network; best subset regression; climate change; collinearity; data
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INTRODUCTION

A main application of species distribution models

(SDMs; also called niche models or habitat suitability

models) are projections of species’ distributions under

future climate and land use (Heikkinen et al. 2006).

There are several ecological caveats to such projections

(such as ignoring biotic interactions and species’

adaptations, as discussed in Austin 2002, Vaughan and

Ormerod 2005, Dormann 2007), and even some

statistical issues concerning species distribution analyses

are still open (Araújo and Guisan 2006). Among the

most prominent concerns is the quantification of

uncertainty in species distribution models and their

predictions (Wintle et al. 2003, Barry and Elith 2006,

Guisan et al. 2006). Uncertainty in model predictions

can arise through many causes (O’Neill and Gardner

1979, Barry and Elith 2006, Heikkinen et al. 2006). We

can group causes of uncertainty into those due to data

quality and availability, those due to model technique

decisions, those due to parameter estimation uncertain-

ty, and finally, those due to uncertainty in future

environmental scenarios (cf. Dijksta 1988).

Data quality and availability concerns both species

distribution data as well as environmental variables. The

former can be derived from surveys, transects, mapping

or unsystematic sampling, yielding abundances, counts,

presence recordings, or, most commonly in the litera-

ture, pre-compiled as presence–absences (occurrences)

from various sources (Rondinini et al. 2006). Each data
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type may require a different statistical handling ap-

proach (e.g., Van Horne 2002). Environmental variables

are often used in modeling because they are readily

available, rather than because of their ecological

relevance. Climate, topographic, and land-use data are

often readily available (Guralnick et al. 2007), while

information on biological interactions, soil and water

quality, intensity of human impact, and historic

development are much more scarce (Austin 2007). The

effect of uncertainty in such environmental data has

been assessed repeatedly and routinely (e.g., Heuvelink

1998, Beven and Freer 2001, Lexer and Hönninger

2004), particularly for remote-sensing data (e.g., Cro-

setto et al. 2000, Raat et al. 2004). Our focus here will be

on the uncertainty attached to species distribution

records.

Although some environmental information is readily

accessible and can be measured, e.g., through remote

sensing, with high spatial and temporal resolution, many

such variables are highly correlated (Graham 2003). The

topography of a region determines, to a large extent, its

climate, the soil type that develops, and thereby, the

human land use (Swanson et al. 1988). Statistical models

may thereby render incorrect estimates of a variable’s

effect in the presence of collinear variables (e.g., Mela

and Kopalle 2002). Most approaches to this problem

start with expert pre-selection of potential, usually

causal, environmental variables, or they use dimensional

reduction techniques (Harrell 2001).

Over the last decade, methods for the analysis of

species distribution have diversified and, at this point,

dozens of different approaches are available for

scientists to choose from (Guisan and Zimmermann

2000, Guisan and Thuiller 2005, Elith et al. 2006).

Different modeling tools will yield different models, as

has been shown time and again for species distribution

models (Thuiller 2003, Segurado and Araújo 2004,

Thuiller 2004, Thuiller et al. 2004, Elith et al. 2006,

Tsoar et al. 2007). While a simple take-home message

has still to emerge from such model comparisons, it is

clear that the decision for or against a model technique

introduces considerable variation into model identifica-

tion (Elith et al. 2006). Moreover, within model types

there are usually several modeling steps, ‘‘some of which

may depend on the subjective assessment of the

statistician’’ (Faraway 1992:216). In this study, we did

not use ‘‘machine-learning’’ methods (such as described

by Elith et al. 2006) for two reasons. Firstly, these

methods subsume several steps that we wanted to keep

separate (e.g., use several models combined for predic-

tion rather than try to find the ‘‘best’’ model). Secondly,

machine-learning methods use internal validation to

derive their model set. Hence, they would always

outperform the ‘‘classical,’’ not internally validated

methods on the cross-validation approach we used. This

is because in cross-validation, the correlation structure

of the variables does not change, and the ‘‘adaptation’’

of machine learning to the specific variable structure will

also guarantee a high performance on the test data

during cross-validation. Thus, including machine learn-

ing would automatically bias in favor of such methods.

Even within model approaches, variable selection can

be performed in different ways. The current state of the

art is based on information theory (Burnham and

Anderson 2002), but even here different information

criteria and target model complexities are possible. For

example, the commonly used Akaike Information

Criterion (AIC) for small sample sizes leads to models

that are too large (Burnham and Anderson 2002), so a

correction should be used, the AICc. Even smaller

models will result from the recommendations of Harrell

(2001), who suggests having 10 to 15 cases per model

term. Presently it is still unclear if, and how much,

variable selection approaches affects model structure

(Whittingham et al. 2006).

Parameter estimation uncertainty is the necessary

consequence of imperfect knowledge and intrinsic to any

real-world model-fitting procedure (Hastie et al. 2001).

Noise in response and explanatory variables, demo-

graphic stochasticity, fluctuations in ecological process-

es, randomness of dispersal, and so forth, lead to an

error around the estimation of model parameters, even if

the underlying process model was identified correctly in

the previous model-building step. Parameter estimation

uncertainty can usually be quantified, however, and thus

easily included into model projections (for a recent

example see Van Vuuren et al. 2006), although error

maps are not commonly encountered in the scientific

literature.

Finally, projections of species distributions under

future climate and/or land-use scenarios are themselves

burdened with uncertainty. Mechanistic global circula-

tion models (GCMs) are honing in on temperature

predictions (although still far from speaking unani-

mously; Stainforth et al. 2005), but their precipitation

forecasts differ vastly, both between GCMs and

observed trends (Wentz et al. 2007). Land-use changes

are obviously related to climate change, but also to

demographic changes, agricultural subsidies (and hence

policy), and technical developments. Thus, deriving

land-use scenarios is burdened with uncertainty both

for total changes in a landscape and for the exact spatial

locations of changes (e.g., Schröter et al. 2005,

Rounsevell et al. 2006, Bolliger et al. 2007).

In this study, we examined the contribution of each of

four modeling decisions (data uncertainty, collinearity,

model type, and variable selection) in the fitting of

species distributions to model quality, as well as two

types of scenario uncertainty (CO2 emission scenarios

and precipitation predictions), for predicting the future

distribution of a critically endangered bird species in a

federal state in Germany. Using the Great Grey Shrike

(Lanius excubitor L.) as a showcase, we evaluated where

most variation enters the species distribution modeling

and to which of these steps model predictions are most

sensitive. This shall tell us which steps we need to pay
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particular attention to and which are comparatively

robust. The point of our study is not to detect the

‘‘truth’’ or to identify the method that yields results

closest to the ‘‘truth,’’ because they are likely to depend

on the data set under investigation (Reineking and

Schröder 2006). Rather, we wanted to quantify which

steps are more influential than others for a typical study

in species distribution.

METHODS

Data

We collected data on Great Grey Shrike distribution

and environmental conditions in the federal state of

Saxony in Eastern Germany (Fig. 1). Data take the form

of a regular lattice of 550 cells with dimensions 5

longitudinal minutes by 3 latitudinal minutes, which for

Saxony is approximately 5.6 3 5.6 km. The Great Grey

Shrike Lanius excubitor L. is a predatory songbird

threatened by habitat destruction in much of central

Europe and is currently listed as critically endangered in

Saxony’s Red List (Rau et al. 1999). Its habitat

comprises open grassland, abandoned farmland, and

bogs. It requires thorny shrubs for perching and for

storing its prey, which comprises large insects (dragon-

flies, ground beetles) and small vertebrates (snakes,

lizards, shrews).

Bird distribution data were taken from the state’s

breeding bird survey 1993–1996 (available online), which

also classifies the birds as probable, likely, or certain

breeder (coded as ‘‘b,’’ ‘‘c,’’ and ‘‘d,’’ respectively).6 These

levels were designed to capture both repeated recordings

of a breeding bird in the same location (leading to certain

breeding points) and the level of certainty of its breeding

status (observation of the bird during breeding season,

food provisioning, mating calls). As such, this classifica-

tion forms one factor of the present study, representing

data uncertainty. Similar data are available for 23 bird

species, collected by over 400 ornithologists.

Environmental data were based on five categories:

climate, land use, soil types, topography, and geographic

distances. Of all environmental data available to explain

the distribution of our target organism, we selected 12,

based on their ecological relevance for the bird species.

These environmental data are to some extent intercor-

related (Appendix A). We used mean annual tempera-

FIG. 1. Distribution data for the Great Grey Shrike in Saxony, Germany. Black, dark gray, and light gray refer to certain,
likely, and probable occurrences (coded as follows: ‘‘d,’’ 57 cases; ‘‘c,’’ an additional 32 cases; and ‘‘b,’’ an additional 39 cases),
respectively. For partial border cells, species occurrence data were collected on the entire quadrant, but environmental data were
available only for the portion shown. The inset shows the location of the study site in central Europe.

6 hhttp://www.umwelt.sachsen.de/de/wu/umwelt/lfug/
lfug-internet/natur-landschaftsschutz_438.htmli
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ture and annual precipitation for the period 1961–1990,

purchased from the Deutscher Wetterdienst as gridded

data (available online).7 The initial resolution of 1 3 1

km was aggregated to that of the bird distribution data

at the expense of slightly reduced value ranges (regres-

sion towards the mean). Land-use variables (percentage

of arable land, bogs, forest, grassland, and unused, poor

open land) were based on 16 000 color-infrared aerial

photographs taken in 1992 and 1993 for the whole of

Saxony and classified into eight main and 40 subcate-

gories (details and data purchasing information are

available online).8 The percentage of sandy soil was also

included as an environmental variable since it charac-

terizes dry and agriculturally less valuable areas (‘‘poor

open’’). Data were taken by merging the forest and the

agriculture soil surveys. Topographical variance was

represented by the variable slope, which is based on the

high-resolution SRTM-3 data (available online).9 Final-

ly, we calculated geographic distances between each

cell’s center, the nearest settlement, and the nearest river

or lake.

All environmental variables were transformed to

achieve an even spread across the data range. Specifi-

cally, slope, percentage arable, forest, grassland, and

sandy soil were square-root transformed, while the

percentage of poor open land, distances to river and

settlement, and mean summer precipitation and temper-

ature were log(x þ c)-transformed (where c equals half

the smallest nonzero value). Finally, all transformed

environmental data were standardized to a mean of 0

and standard deviation of 1.

Climate scenarios were provided by Meteo-Research

(available online).10 Projections from the regional climate

model WETTREG based on global simulations from

the ECHAM5-Model were taken for the decade from

2041 to 2050. IPCC-Scenarios A1B, A2, and B1 (IPCC

2001) each with three realizations that reflect a dry, wet,

and normal decade were used (see Methods: Predictions,

scenarios, and realizations for details). Based on a daily

time series for mean summer precipitation and mean

annual temperature for climate stations, values for our

lattice were obtained by external drift kriging using the

R-package geoR and elevation as a covariate.

Statistical modeling approaches

The overall workflow of our study is presented in Fig.

2. We analyzed the contribution of four omnipresent

modeling issues to the overall quality of the model: data

uncertainty, collinearity, model type, and variable

selection. For each step, three alternatives were em-

ployed in a factorial manner, resulting in 34 ¼ 81

different models. Each model was cross-validated

fivefold, i.e., built on 80% of the data (training) and

validated on 20% (test), yielding 405 model runs. In the

analysis of this SDM experiment, we used the cross-

validation model runs as replicates and the mean AUC

(area under curve) value as our response variable.

Collinearity methods.—Of the various methods avail-

able to account for correlated environmental variables,

we selected principal component analysis (PCA; Legen-

dre and Legendre 1998), sequential regression (‘‘seq.reg’’

in Fig. 2; Graham 2003), and no correction. Both PCA

and sequential regression yield orthogonal transformed

variables, but with very different meaning. In PCA, each

principal component reduces the remaining variance in

the matrix of environmental data, and all variables

contribute to all axes. In sequential regression, a

(nonlinear) univariate pre-scan was used to rank

explanatory variables according to their ability to

explain variation in presence-absence data. Then, the

best variable (say ‘‘A’’) remains as it is, while the second-

best (say ‘‘B’’) is regressed against the first, and the

residuals of this regression now represent this second-

best variable (‘‘B*’’). B* must be interpreted as ‘‘the

effect of B in addition to that already explained by A.’’

The same procedure is now repeated for the next

variable (C regressed against A þ B*) and so forth.

Thus, in contrast to PCA, each orthogonal new variable

is represented by one variable only.

The combination of sequential regression and best-

subset regression is rather computer intensive, since

every set of variables must be re-computed whenever a

variable is deleted during stepwise selection (see Fig. 2,

paths below AIC and AICcEPV20). Despite its good

performance in simulation studies (Graham 2003),

sequential regression is seldom used in statistical

analyses. This is mainly due to the conditionality of

residuals and the level of arbitration entering through

the sequence in which variables are considered and

residuals are calculated. Both limitations are of little

relevance to our study since we were mainly interested in

its effect on model quality in general.

Model type.—We selected three model types: Gener-

alized Linear Models (GLM, with logit link and

assuming a binomial error distribution; McCullough

and Nelder 1989), Generalized Additive Models (GAM,

with cubic smoothing splines; Wood 2006) and Artificial

Neural Networks (ANN, feed-forward ANN with one

hidden layer; Venables and Ripley 2002). These methods

performed the best in the comparative study by Pearson

et al. (2006). The hidden layer of the ANN contained

seven units (‘‘nodes’’) and had a weight decay of 0.03,

following the example of Thuiller (2003). All three

model approaches (GLM, GAM, and ANN) allowed for

nonlinear effects (for GLM by including a quadratic

term), but we did not incorporate interactions to limit

computational effort.

Variable selection.—Model selection refers to selecting

the most appropriate model from those that can be

7 hhttp://www.dwd.dei
8 hh t t p : / / w w w . u m w e l t . s a c h s e n . d e / l f u g /

natur-landschaftsschutz_328.htmli
9 hhttp://edcsgs9.cr.usgs.gov./pub/data/srtmi
10 hhttp://www.cec-potsdam.de/Produkte/Klima/WettReg/

wettreg.htmli
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constructed with a given set of environmental variables.

Appropriateness is defined depending on the purpose of

the model (i.e., hypothesis testing or prediction; Mac

Nally 2000). For hypothesis testing the most parsimo-

nious model is usually preferred, while for prediction,

the model with the lowest validation error is preferable.

We used three different ways to derive the final model

from the set of possible candidates: stepAIC, AICc, and

AICcEPV20 (AIC and AICc were calculated according

to Burnham and Anderson 2002). Stepwise selection

(starting with the full model) has repeatedly come under

fire for producing bias (e.g., Whittingham et al. 2006),

but still holds its place as the most commonly used

model selection algorithm. The criterion to exclude a

variable is the model’s increase in AIC after the

variable’s exclusion (Burnham and Anderson 2002,

Venables and Ripley 2002). For GAMs we used a

shrinkage procedure in lieu of a stepwise selection, as

proposed by Wood (2006). Here, each model term is

reduced in its ‘‘wiggliness’’ to the parsimonious mini-

mum. Any variable with an estimated degree of freedom

of 1 (indicating a slope of 0 for this variable) was then

excluded from the model. For ANN we programmed a

new stepwise-procedure. The problem with ANN is that

initial weights are randomly allocated to the nodes, and

hence, two runs of the same model will lead to different

final weights. Thus, we replicated each model 10 times

and calculated the mean AIC. This procedure was

repeated for all sub-models with one variable less than

the full model. The variable that reduced mean AIC

least was selected for deletion. Then, the simplified

model was used as full model, and the procedure was

repeated until no variable could be removed without

increasing the AIC. ANN models differed more among

FIG. 2. The structure of the analysis experiment. The six steps depicted on the left-hand side were combined factorially. The two
shaded, bold-outlined boxes indicate the criteria analyzed. Abbreviations are: PCA, principal component analysis; seq.reg,
sequential regression; GLM/GAM, Generalized Linear/Additive Model; ANN, Artificial Neural Network; AICc, sample-size
corrected Akaike Information Criterion; AICcEPV20, AICc model reduced to 20 events per variable. Other abbreviations are
explained in the Methods.
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repeated runs than GLM or GAM, making the selection

of variables for the ‘‘best’’ model less reproducible. Since

their success in predictive models has often been hailed

(Hilbert and Ostendorf 2001, Recknagel 2001, Thuiller

2003, Segurado and Araújo 2004, Araújo et al. 2005), we

still kept this method.

For small sample sizes, the sample size-corrected AICc

was proposed (Burnham and Anderson 2002), which

was implemented in the other two model selection

procedures: We constructed all possible subsets of

variables (with and without quadratic terms). This all-

subsets approach was used in two flavors: In ‘‘AICc,’’ the

model with the lowest AICc value is returned, up to a

model complexity of 12 variables (see Whittingham et al.

2007, for a similar implementation). In AICcEPV20, we

additionally restricted the set of possible candidates to

those models having a maximum of N/20 parameters

(where N is the minimum of number of presences or

absences in the data set). Harrell (2001) refers to this

value as events-per-variable (EPV). An EPV of 20

generally leads to small and robust models.

Reference analyses

In our analysis we ran hundreds of thousands of

models. By chance alone there may be very well-fitting

ones among them. Therefore, we decided to carry out

two different reference analyses: a null model and a best-

possible model.

The null model consisted of the same response

variables (i.e., the presence–absence value observed with

data uncertainty probable, likely, or certain breeder,

coded as ‘‘b,’’ ‘‘c,’’ and ‘‘d,’’ respectively), but the 12

environmental variables are replaced by random values.

It addressed the view that, with high-computational

approaches, one may only be ‘‘fishing for significance.’’

We decided to retain the correlation structure of the

original variables, because this constrains the model

space. Hence, the 12 new random environmental

variables were drawn from a multi-normal distribution

with means ¼ 0 and standard deviation ¼ 1 (i.e., values

are normalized, as are the original environmental data),

and with a correlation matrix defined by the observed

correlation matrix. Then, we also repeated the fivefold

cross-validation analysis as described in the Methods:

Analysis section for the null model in order to estimate

the model quality of a random environment without

ecological meaning.

The best-possible model is aimed at defining the upper

limit of what the models can possibly achieve. For this

approach, we constructed a simple virtual species (e.g.,

Meynard and Quinn 2007), whose presence–absence

data are fully determined by the environmental values.

We used a complex, but ecological plausible functional

relationship between four environmental variables to

predict the occurrence probability for the virtual species,

which was guided by a preliminary GLM analysis: g(p)

¼ 75 – (1.63biotope diversity) – (63distance to river)þ
(0.5 3 percentage low quality open land) þ 0.1(percent-

age of low quality open land)2 – (0.5 3 annual

precipitation) þ (0.2 3 annual precipitation�distance to

river), where g ¼ ln(p/(1 – p)) is the logit-link function,

and p is occurrence probability. This equation was

derived by first specifying the four environmental

variables we deemed ecologically plausible, then speci-

fying a regression model including a quadratic term and

an interaction, and then fitting this pre-specified model

to the real data using a GLM. The estimated coefficients

were then used to construct the virtual species. In this

way, our virtual species carries the characteristics of our

expectation and our data, without being a replicate of

any observed data. For each level of data uncertainty, a

threshold level was chosen to convert probabilities into

0/1 in such a way as to match the observed prevalences.

Analyzing this data set in the same way as the observed

data, we could quantify the ability of model approaches

to detect the true underlying explanatory variables.

Since the results from these two models satisfied our

underlying assumptions, we only briefly present them in

this section and do not return to them in the Results or

Discussion. In brief, they show that for the null model

test, all AUC values were very poor and in fact

indistinguishable from pure chance ¼ 0.5 (mean 6 SD

AUC across the five validation runs of all 81 models,

0.495 6 0.030). For the virtual species, the mean AUC

was 0.956 6 0.036 and hence excellent. These findings

show that our approach (1) was not biased by detecting

irrelevant variables and (2) can, at least in principle,

model the correct underlying relationship independent

of model type with very high precision.

Predictions, scenarios, and realizations

Species distribution models are often used to assess

the effect of environmental change on species distribu-

tions, by forecasting (projecting) occurrence probabili-

ties to future scenarios. We employed three different

scenarios (A1B, A2, and B2, following the IPCC Special

Report on Emissions Scenarios [SRES], where A1B

represents global convergence and rapid economic

growth with balanced use of energy sources; A2

represents regional development and slower economic

growth; B2 refers to an emphasis on local to regional

development, with slower economic growth and higher

levels of environmental protection). For each of these

three climate change scenarios, we chose three different

realizations for precipitation trends, since rainfall can be

predicted only with high uncertainty: dry, average, wet.

As it turns out, scenarios mainly represented tempera-

ture increases (approximately 17%, 19%, and 17% of the

current annual average of 8.28C), while realizations

within scenarios differed mainly in summer precipitation

(approximately�9%, 0%, andþ2% change compared to

today’s 220 mm, respectively).

Onto each of these nine scenario–realizations we

projected occurrence probabilities using the 81 different

models, now built on the full data set, resulting in 729

projections. A confusion matrix was generated that
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cross-tabulated observed and predicted occurrence

patterns in true/false presences and absences: a repre-

sents presences observed and predicted; b observed but

not predicted presences; c predicted but not observed

presences; and d predicted and observed absences

(Fielding and Bell 1997). To derive the values for a to

d for the present species distribution, we used different

thresholds to convert the occurrence probability given

by the model fit into presence-absence data. Firstly,

when we are interested in the change of species

prevalence, the threshold should be chosen in such a

way that fitted model data and observed data have the

same number of predicted occurrences (‘‘prevalence

constancy’’; (aþb)/(aþ c)). Secondly, we were interested

in geographical shifts of the distribution; hence, for this

measure the threshold should be chosen to match

observed and fitted values most closely (‘‘location

constancy,’’ b/(a þ b)). Finally, we may want to

maximize the agreement of model fit and observations

for presences and absences, which can be achieved using

kappa maximization (see Fielding and Bell 1997 for

formula). Prevalence constancy and kappa maximiza-

tion yielded similar thresholds (mean across all 81

models of 0.341 and 0.334, respectively), but location

constancy led to rather different values (0.705).

For scenario projections we used the different

thresholds computed for the full model. We then

calculated changes in species occurrence (using the

‘‘prevalence constancy’’ formula) and shifts in their

locations (using the ‘‘location constancy’’ formula) due

to climate change. These values were then analyzed for

the main drivers: model-building steps and scenario/re-

alizations.

Analysis

The SDM experiment delivered data from 81 different

model approaches, ‘‘replicated’’ across the five valida-

tion data sets. Since these ‘‘replicates’’ shared 20%–80%

of the same data, they cannot be considered indepen-

dently. We thus analyzed the mean AUC values across

the five validation runs by means of analysis of variance.

Model diagnostics showed that residuals were approx-

imately normally distributed and variances homoge-

nous.

Analysis of variance calculates the variance (in terms

of sum of squares) that can be attributed to each step in

the model sequence, which represent the factors of the

experiment. Hierarchical partitioning (Chevan and

Sutherland 1991, Mac Nally 2000) was used to rank

the importance of the main factors. Although some

interactions were significant in ANOVA, these contrib-

uted little to the variation explained, and hence a

ranking of the main factors seemed acceptable. Similar-

ly, we analyzed the variation in predicted changes in

prevalence and shifts of the distribution for the 729

projections for the effect of the six explanatory variables

(the four modeling steps plus the two scenario steps). All

analyses were carried out using the free software R (R

Development Core Team 2008) versions 2.3.1–2.6.0,

with packages MASS, nnet, geoR, gtools, mgcv, multi-

comp and verification (Venables and Ripley 2002).

RESULTS

We present the findings of our analysis in the

following sections. First, we analyze the effect of data

uncertainty, model type, variable selection method, and

collinearity correction on the models ability to discrim-

inate between presences and absences (as measured by

the mean AUC of five subsets for the 80/20 cross-

validation). This produced the main picture of which the

model-building steps were particularly important in our

analysis. Secondly, we investigate whether the different

modeling approaches identify the same environmental

variables as important for the distribution of the Great

Grey Shrike. Thirdly, we used the models built on the

full data set to predict the species distribution under nine

different climate change scenarios. Here we analyze the

change in prevalence and the shift of distributions under

the 81 models and 9 scenarios (729 projections).

Variation introduced by model-building steps

The analysis of the mean cross-validated AUC values

showed a very clear picture. Hierarchical partitioning

identifies model type (GLM, GAM, ANN) as the most

important source of variation (52.2%), followed by data

uncertainty (27.4%), collinearity method (20.1%), and

finally the variable selection approach (0.3%). This exact

pattern is also found when considering interactions

among the four model-building steps (Table 1). Here the

interactions with collinearity contribute additional

variation.

Model type

Artificial Neural Networks (ANN) had the worst

validation score of the three model types, while GAM

and GLM were virtually indistinguishable (Fig. 3).

GAMs and ANNs contain six times more parameters

than GLMs (GLM, 8.2 6 0.55; GAM, 50.0 6 3.09; and

ANN, 54.9 6 2.94), leading to a negative relationship

between model generality and model complexity

TABLE 1. ANOVA results for mean cross-validated area under
curve (AUC) values.

Modeling step df SS100 F P

Model type 2 7.64 111.3 ,0.001
Data uncertainty 2 2.71 39.5 ,0.001
Collinearity correction 2 0.89 13.0 ,0.001
Variable selection method 2 0.19 2.7 0.075
Data uncertainty 3 collinearity

correction
4 0.49 3.6 0.011

Collinearity correction 3 variable
selection

4 0.53 3.9 0.007

Collinearity correction 3 model
type

4 0.39 2.9 0.031

Residuals 60 2.06

Note: SS100 refers to sum of squares (Type I) multiplied by
100 for easier presentation.
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(AUCpred ¼ 0.80004 – 0.00086 df, r ¼ �0.461, P ,

0.001; see Appendix B). However, GAMs are equally

parameter rich as ANNs, but have much higher

validation scores, indicating that the number of param-

eters per se may not be a good measure of model

complexity (Ye 1998).

Data uncertainty

A curious pattern emerges for data uncertainty.

Although the models for data with the highest certainty

of occurrence (classification ‘‘d’’) may be ecologically

most sound, they are based on fewer data points,

making parameter estimation less robust (Fig. 3). Too

lax a definition of a breeding occurrence (‘‘b’’), on the

other hand, also yields poorer model fits, because they

are overestimating the ecological niche of the bird.

Collinearity

Absolute correlation values among environmental

variables ranged from 0.01 to 0.91 (mean¼ 0.29, median

¼ 0.25; four correlations jrj . 0.6; Appendix A).

Collinearity (although present in our data) seemed not

to pose problems for internal prediction, since no

correction and sequential regression (leading to the

removal of collinearity) yield very similar results.

However, collinearity interacts with all other three

model-building steps significantly. In the case of data

uncertainty (Fig. 4a), the PCA works worse at low (‘‘b’’)

and high prevalence (‘‘d’’), but is indistinguishable from

the other two methods for intermediate prevalence (‘‘c’’).

In interaction with model type (Fig. 4b), PCA performs

worse with GAM and ANN than with GLM. Finally,

the interaction of variable selection approaches shows

again the PCA as source of variation, this time due to its

reduced robustness when very small models were

selected.

Variable selection

The three different approaches to variable selection

were virtually indistinguishable (Fig. 3). Although the

approach AICcEPV20 yielded somewhat smaller models

than the other two, validation AUC values were very

similar.

ENVIRONMENTAL CORRELATES OF GREAT GREY

SHRIKE DISTRIBUTION

Variable importance differed depending on the

collinearity method employed (Table 2). Distance to

rivers was the most important environmental correlate

in all methods, but, while rainfall is ranked third in

models without collinearity correction, it was last in the

PCA (and intermediate fifth in sequential regression).

Overall agreement between ‘‘none’’ and ‘‘sequential

regression’’ was high (Spearman’s rank test: q ¼ 0.88,

P , 0.001), PCA ranks were not correlated with ‘‘none’’

(q¼ 0.14, P¼ 0.66), nor with ‘‘sequential regression’’ (q
¼ 0.09, P ¼ 0.78). These differences in the ranking of

environmental variables must be seen as a consequence

of their collinearity (see Appendix A).

The two model approaches sharing the highest AUC

value (0.83, based on five 80/20 validations) is a standard

GLM without collinearity correction (or sequential

regression), strong variable selection (AICcEPV20) for

the medium certain data (‘‘c’’). This model without

collinearity correction is presented in Table 3 and Fig. 5.

FIG. 3. Mean AUC values as affected by the four model-building steps. Error bars are standard deviations across the 27 runs
for each level. Bars sharing the same capital letter within a panel are not significantly different (Tukey’s hsd post hoc test P . 0.05).
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CLIMATE PROJECTION UNCERTAINTY

We analyzed two different features of future projec-

tions: changes in prevalence (i.e., increase or decrease in
the total number of predicted presences), and shifts in
spatial patterns (i.e., to what extent new areas were

important for the species).

Prevalence

We analyzed the predicted prevalence (i.e., number of

occurrences divided by total number of cells) for the
three scenarios and the three rainfall realizations. The

analysis of projections (i.e., scenarios and realizations)
show that differences between the scenarios A1B, A2,

and B1 and between the realizations wet, medium, and
dry were so small that they did not contribute to the

variation in predicted prevalence. Due to higher annual
temperatures, prevalence increased threefold (2.94 6

2.20, 2.95 6 2.20, and 2.87 6 2.13 prevalence for
scenarios A1B, A2, and B1, respectively [mean 6 SD]).

This increase was not influenced by the differences in
predicted rainfall (2.87 6 2.13, 2.85 6 2.12, and 3.04 6

2.27 for the realizations dry, medium, and wet,
respectively). As can be seen in the huge standard
deviation, variation between different modeling steps

caused far greater variation in projected change than
differences between scenarios and realizations. Hierar-

chical partitioning identifies model type (63%), data
uncertainty and collinearity method (13% each), and

variable selection (9%) as far more important for
variation in predicted prevalence than differences

between scenarios (0.1%) or realizations (0.9%). As
already described for the analysis of mean validation

AUC values, two-way interactions are also important,
but none included either ‘‘scenario’’ or ‘‘realization.’’

The range of predicted changes was very large (Fig. 6),
ranging from near-extinction to a 10-fold increase.

Spatial shift

Furthermore, we analyzed how climate projection
would change the spatial distribution of shrike occur-

rence. Our response variable was the proportion of new
cells (i.e., those previously unoccupied that are predicted
to be occupied). We found, as before for changes in

prevalence, that neither difference between scenarios nor
between realizations had a detectable impact on

projected shifts. The projected increased temperature
led to 60% of new cells being occupied (60.4 % 6 28.3%,

60.7% 6 28.2%, and 60.4% 6 27.8%, for A1B, A2, and
B1, respectively). Differences in predicted rainfall were

irrelevant in these projections (59.8 6 28.1, 59.6 6 28.3,
and 62.0627.7 for realizations dry, medium, and wet,

respectively). As before for changes in prevalence,
scenarios and realizations contributed negligibly to

hierarchical partitioning (0.004% and 0.46%, respective-
ly). Most important were the collinearity method (50%)

and model type (42%), while data uncertainty (5%) and
variable selection (2%) were also largely unimportant.

Two-way interactions among these latter variables were

also relevant, but again, neither ‘‘scenario’’ nor ‘‘reali-

zation’’ were included in any of them.

DISCUSSION

Where the error comes in . . .

Previous studies have pointed out various stages

during data analysis that can affect the structure of the

final model (reviewed in Elith et al. 2002, Heikkinen et

al. 2006). The present study is the first to quantify the

relative contributions on model fit and model predic-

tions, although there are previous studies that looked at

individual steps in the model-building sequence (Far-

FIG. 4. Effect of the interaction of (a) data uncertainty, (b)
model type, and (c) variable selection and collinearity method
on mean area under curve (AUC) values. Error bars depict
þSD. Classifications in panel (a) are probable, likely, and
certain occurrences coded as ‘‘b,’’ ‘‘c,’’ and ‘‘d,’’ respectively.
Within bar groups, bars sharing the same letter are not
significantly different according to Tukey’s hsd post hoc test
(P . 0.05). For differences between groups see Fig. 3.
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away 1992, Chatfield 1995, Maggini et al. 2006). We

shall only briefly discuss those steps which appeared as

relatively unimportant (Table 1), lingering longer on

model type.

Data uncertainty has been identified as a crucial yet

little investigated determinant of model quality (re-

viewed in Rondinini et al. 2006). Securing high data

quality is a main concern of the Global Biodiversity

Information Facility (Guralnick et al. 2007), and critical

analysis of herbarium data has shown this most

common of data sources to be fallible (Graham et al.

2004, Applequist et al. 2007). In our study, certainty of

breeding occurrences was judged by experts during the

assembly of the database. Failure to include a breeding

site (‘‘omission error’’) had to be balanced against

wrongful inclusion of a nonbreeding site (‘‘commission

error’’; Rondinini et al. 2006). The lowest level of

occurrence data certainty (‘‘b’’) apparently made models

too insensitive to identify the underlying environmental

drivers. Hence, we detected changes in model quality

due to a trade-off between commission and omission

errors: Being stricter about breeding occurrence led to a

misrepresentation of the potential breeding habitats,

while being too lax about them led to reduced niche

definition. This is in line with other studies showing

model quality to decrease with decreasing prevalence

(Brotons et al. 2007, Meynard and Quinn 2007).

Collinearity, the interdependence of explanatory

variables, is a pervasive feature of ecological data

(Mac Nally 2002). In one of the very few systematic

studies on collinearity effects, Graham (2003) reports of

biased parameter estimates with correlation levels as low

as jrj ¼ 0.3. Several ways to address collinearity have

been described (Belsley 1991, Booth et al. 1994,

Legendre and Legendre 1998, Harrell 2001, Hastie et

al. 2001, Graham 2003), but only very few find

application in ecology. Most commonly, environmental

variables are subjected to a principal component

analysis (PCA), to a cluster analysis from which one

cluster member is used to represent the entire cluster, or

to a knowledge-guided deletion of variables from

correlated pairs where jrj . 0.7. This value is folk law:

It has no statistical foundation, but can be found in

many publications for its convenience. To date, guide-

lines for the handling of collinearity in ecological data

are lacking and the consequences for predictive models

are unknown (Heikkinen et al. 2005).

In our analysis, ignoring collinearity (‘‘none’’) yielded

very similar AUC values to PCA and sequential

regression. PCA-transformed data seemed to be more

TABLE 2. Ranking of environmental variables in dependence of collinearity method.

Variable

None Sequential regression

PCA rankProportion Rank Proportion Rank

Distance to river 0.93 1 1.00 1 1
Percentage sandy soil 0.74 2 0.70 4 2
Summer precipitation 0.70 3 0.59 5 12
Distance to settlements 0.63 4 0.74 3 6
Mean annual temperature 0.63 4 0.59 5 10
Slope 0.59 6 0.85 2 11
Percentage of poor open land 0.44 7 0.48 7 5
Percentage bogs 0.37 8 0.33 9 3
Number of different habitats 0.33 9 0.41 8 7
Percentage arable land 0.15 10 0.30 10 9
Percentage forest 0.15 10 0.22 11 8
Percentage grassland 0.11 12 0.07 12 4

Notes: ‘‘None’’ means that no correction was applied. Rank is based on the proportion of models containing each variable. For
principal component analysis (PCA), this is the sum of absolute loadings on the first seven PCA axes, weighted by the proportion of
models selecting each axis.

TABLE 3. Model output based on the approach deemed best by fivefold cross-validation (mean AUC 6 SD ¼ 0.81 6 0.04;
deviance-based pseudo-R2 ¼ 0.27 6 0.04).

Variable df Deviance Estimate SE v2 P

Intercept 1 –2.31 60.18
Distance to river 1 3.88 –0.68 60.14 5.3 0.022
Distance to settlements 1 66.37 0.83 60.15 64.2 0.000
Summer precipitation 1 47.37 –0.88 60.18 45.7 0.000
Percentage sandy soil 1 8.58 0.41 60.14 8.6 0.003
Residuals 545 360.73

Notes: This model does not employ correction for variable collinearity, although that version was nearly as good. Notice that
distance to river (the most commonly selected variable) is not as strong as distance to settlements and summer precipitation. Since
variables were standardized before analysis, absolute slopes are a directly comparable measure of variable importance (see also Fig.
5). The v2 column reports the chi-square value of a likelihood-ratio test, while P refers to its significance.
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sensitive to the choice of the next modeling steps: They

performed worse than ‘‘none’’ and sequential regression

with the artificial neural networks, gave worse results on

smaller models, and were more impacted by omission

and commission errors in occurrence data (Fig. 4). We

hesitantly conclude from our analysis that collinearity is

a lesser problem than overfitting (see section The

importance of model type below) or data uncertainty.

Variable selection describes the simplification of a

model by selecting only those explanatory variables that

are important. The key questions here are: (1) What is

the selection process? and (2) How is importance

measured? The traditional selection process for Gener-

alized Linear Models is to specify the full model and

then use a stepwise backward simplification (Venables

and Ripley 2002). Stepwise procedures have been

repeatedly criticized (see recent critique by Whittingham

et al. 2006, for references) for introducing a bias, but a

full model space search is extremely time consuming. An

alternative procedure is parameter shrinkage, intro-

duced by Tibshirani (1995), where not only the number

of parameters, but also their value contributes to the

penalty of a model. In our study, models identified

through stepwise backwards selection were indistin-

guishable in the validation performance to those derived

from an exhaustive search of the model space (Fig. 3).

Since projected changes in prevalence were also not

influenced by the variable selection method, our results

are concordant with those of Maggini et al. (2006) and

Meynard and Quinn (2007), who found differences

between variable selection methods to be very small.

Thus, while the potential for bias has to be acknowl-

edged, we should not consider all studies using stepwise

procedures as fundamentally flawed.

Scenario uncertainty contributes little to the variation

in prevalence predictions in our study. The three climate

change scenarios employed here differ only little in their

temperature prediction for the year 2050. Also, variation

between wet and dry years is quite small, making

scenario uncertainty the least important contributor to

variation in predicted prevalence. This is in stark

contrast to the strong increase in prevalence due to

climate change: Scenarios drive the prediction, but they

do not differ much. For studies on larger spatial extent

and into the farther future the uncertainty introduced

through differences between scenarios is likely to be

much larger (Schröter et al. 2005). Our scenarios only

relate to future climate. The concomitant land-use

changes are not considered here, although they may be

more important than climate change (as shown for

plants by Van Vuuren et al. 2006).

FIG. 5. Functional form of the relationship between the four environmental variables in the best model and the predicted
occurrence probability. Due to variable transformation and the logit-link implicit in the binomial GLM, linear effects in the model
appear as (monotonic) nonlinear effects.
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We only analyzed the distribution of one species.

Thus, we are unable to tell in how far our results are case

dependent. Because our findings are straightforward and

largely in line with other studies (see next section), we

are confident that this study will be corroborated by

future studies on other species.

The importance of model type

Consequences of differences between model types for

model quality and model predictions are the factor most

commonly investigated in the species distribution

literature (e.g., Pearson et al. 2006, Guisan et al. 2007,

FIG. 6. Predicted prevalence and occurrence probability maps for quartiles. Each of the 27 approaches per model type yields nine
projected prevalences, which are depicted here as density curves (light, medium, and dark gray lines refer to ANN, GAM, and GLM,
respectively). Vertical dashed lines are quartiles (i.e., 25%, 50%, and 75% of all model projections lie to their left); the solid gray line
at prevalence¼ 1 indicates the present level of prevalence. Maps are predicted occurrence probabilities for the model closest to the
three quartiles (from top left to bottom right) depicted in the graph (models are: first quartile, b/seq.reg/AICcEPV20/ANN/A1B/wet;
median, d/none/AICc/GLM/A1B/medium; third quartile, b/seq.reg/AICcEPV20/GAM/A1B/wet).

CARSTEN F. DORMANN ET AL.3382 Ecology, Vol. 89, No. 12



Meynard and Quinn 2007). Since these findings have

not, to our knowledge, been synthesized into clear

recommendations, we will briefly go into some more

detail here.

Model types fall largely into three groups: ‘‘tradition-

al’’ approaches such as Generalized Linear Models

(GLM), Generalized Additive Models (GAM), Discrim-

inant Analysis, Classification And Regression Trees

(CART); ‘‘machine-learning’’ methods such as Artificial

Neural Networks (ANN), Boosted Regression Trees

(BRT), randomForest, Multiple Adaptive Regression

Splines, Support Vector Machines, and nameless others;

and, thirdly, ‘‘presence-only’’ techniques such as Genetic

Algorithm and Rule-set Prediction, Maximum Entropy,

Environmental Niche Factor Analysis, and various

flavors of bioclimatic envelopes. In comparisons of

presence-only and traditional approaches using pres-

ence–absence data, the latter were generally superior

(e.g., Brotons et al. 2004, Meynard and Quinn 2007).

This comparison is slightly unfair, since presence-only

models come into their own when exposed to presence-

only data, where the other methods are simply not

applicable. Studies comparing traditional and machine-

learning model types (e.g., Segurado and Araújo 2004,

Pearson et al. 2006, Guisan et al. 2007, Meynard and

Quinn 2007) show a very mixed picture: GAM, and,

surprisingly, GLM are usually among the most robust

methods (assessed similar to our study as AUC on a test

data set). Some machine-learning methods give evidence

of a real improvement (particularly Boosted Regression

Trees and the new BRUTO-version of GAMs), but

others exhibit signs of overfitting, i.e., low validation

AUC values (e.g., ANN, GARP, bioclimatic envelopes,

CART, but see Olden and Jackson 2002, for a case of

superior ANN performance). A comparison of methods

‘‘only’’ recently developed, the study of Elith et al. (2006)

shows the full scatter of model qualities.

In our study, the two traditional methods outper-

formed the machine-learning algorithm. Model com-

plexity, expressed in number of parameters fitted,

indicates that more complex models are also more

prone to overfitting (Hastie et al. 2001). The comparison

of GAM and ANN (Appendix B) indicates that this

need not be the case. Rather than number of parameter

per se, it is the flexibility with which these are actually

calculated that determines the tendency of a model to

overfit (‘‘effective number of parameters’’ sensu Hastie

et al. 2001; and ‘‘generalized degrees of freedom’’ in the

words of Ye 1998 and Elder 2003).

It is worth investing time in the selection of a robust

and trustworthy model type. In our study, even

relatively small differences in validation robustness

(Fig. 3) led to huge differences in predicted effects of

climate change (Fig. 6): The hyper-flexible ANN was

most conservative, while the relatively rigid GLM

projects the largest change (Appendix C). Also, ANN

interacted noticeably with the collinearity method (Fig.

4), again cautioning us against its use.

Extensions of this approach

Out of necessity, our study was unable to investigate
the realm of modeling decisions exhaustively. Encour-

agingly, however, each step we investigated mainly
contributed to the model quality variation independent-

ly. Table 1 indicates that the collinearity interactions
contribute only half of data uncertainty and one-fourth

of model type uncertainty. This means that in order to
investigate the importance of modeling decisions we may

not need to go for full factorial designs such as ours, but
can possibly restrict efforts to univariate explorations

(such as Scott et al. 2002, Maggini et al. 2006). We can
see four immediate ways to extend our study: (1)

incorporate different explanatory variable pre-selections
(e.g., expert knowledge, cluster-representatives, pre-

screening); (2) incorporate more of the other possible
model types (as mentioned in the section The importance

of model type); (3) incorporate different ways to deal
with spatial autocorrelation (as reviewed in Dormann et
al. 2007); and (4) incorporate interactions among

variables (as strongly advocated in Austin et al. 1990,
Barry and Elith 2006). Moreover, using an artificial

species approach (advocated by Austin et al. [2006] and
carried out by Hirzel et al. [2001], Mikusinski and

Edenius [2006] and Meynard and Quinn [2007]) would
additionally allow to quantify the bias in model fits

introduced by different model steps.

The shrike’s future

Our study’s main aim was to quantify the contribu-

tion of different steps in the model-building procedure
for model quality and climate change projections. But

our results obviously also have bearing on the prediction
of the future distribution and prevalence of the Great

Grey Shrike in Saxony. More than 75% of projected
prevalences across all analyses and scenarios are above
the present prevalence (Fig. 6). Trusting GAM and

GLM more than ANN, we even venture the prediction
that the Great Grey Shrike will thrive under Saxony’s

future climatic conditions. By how much its prevalence
will increase, is, however, burdened with uncertainty.

The inter-quartile range stretches from 1 to 4, with a
median of 2, but even a six-fold increase in prevalence

would still seem statistically plausible (;1/10 of all
predictions are higher than this value). Our prediction

uncertainty compares favorably to the study of Pearson
et al. (2006), who reported a variability from 92% loss to

322% gain for four South African proteacean plant
species.

Models can fit extremely well but still project poorly,
as seen in the case of the sister species, the Red-backed

Shrike (Araújo and Rahbek 2006). Also in the Mediter-
ranean, another congener, the Lesser Grey Shrike, has

been decreasing over the last decades (Giralt and Valera
2007). So, apart from data, model-building, and
scenario uncertainty, additional ecological facets of

uncertainty enter the framework: Will the bird colonize
all suitable sites (e.g., Midgley et al. 2006)? Will the
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limiting factors remain the same and our models’

assumption of stationarity hold (e.g., Schröder and

Richter 1999, Randin et al. 2006)? Did we manage to

capture all important determinants of the shrike’s

distribution, either as direct effects or at least as proxies

(see Coudun et al. 2006, Luoto et al. 2006, for example,

where inclusion soil and land-use variables made a large

difference to the climate-only models)? In short: Based

on the available data, the future for the Great Grey

Shrike looks bright in Saxony; but we would be very

diffident to stake our reputation on this prediction.
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Araújo, M. B., and C. Rahbek. 2006. How does climate change
affect biodiversity? Science 313:1396–1397.

Austin, M. P. 2002. Spatial prediction of species distribution:
an interface between ecological theory and statistical
modelling. Ecological Modelling 157:101–118.

Austin, M. 2007. Species distribution models and ecological
theory: a critical assessment and some possible new
approaches. Ecological Modelling 200:1–19.

Austin, M. P., L. Belbin, J. A. Meyers, M. D. Doherty, and M.
Luoto. 2006. Evaluation of statistical models used for
predicting plant species distributions: role of artificial data
and theory. Ecological Modelling 199:197–216.

Austin, M. P., A. O. Nicholls, and C. R. Margules. 1990.
Measurement of the realized qualitative niche: environmental
niche of five Eucalyptus species. Ecological Monographs 60:
161–178.

Barry, S., and J. Elith. 2006. Error and uncertainty in habitat
models. Journal of Applied Ecology 43:413–423.

Belsley, D. A. 1991. Conditioning diagnostics: collinearity and
weak data regression. Wiley, New York, New York, USA.

Beven, K., and J. Freer. 2001. Equifinality, data assimilation,
and uncertainty estimation in mechanistic modelling of
complex environmental systems using the GLUE methodol-
ogy. Journal of Hydrology:11–29.

Bolliger, J., F. Kienast, R. Soliva, and G. Rutherford. 2007.
Spatial sensitivity of species habitat patterns to scenarios of
land-use change (Switzerland). Landscape Ecology 22:773–
789.

Booth, G. D., M. J. Niccolucci, and E. G. Schuster. 1994.
Identifying proxy sets in multiple linear regression: an aid to
better coefficient interpretation. Research Paper INT-470,
USDA Forest Service, Forest Service, Ogden, Uah, USA.

Brotons, L., S. Herrando, and M. Pla. 2007. Updating bird
species distribution at large spatial scales: applications of

habitat modelling to data from long-term monitoring
programs. Diversity and Distributions 13:276–288.

Brotons, L., W. Thuiller, M. B. Araújo, and A. H. Hirzel. 2004.
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Wirbeltiere. Sächsisches Landesamt für Umwelt und Geo-
logie, Dresden, Germany.

Recknagel, F. 2001. Applications of machine learning to
ecological modelling. Ecological Modelling 146:303–310.
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Thuiller, W., M. B. Araújo, R. G. Pearson, R. J. Whittaker, L.
Brotons, and S. Lavorel. 2004. Uncertainty in predictions of
extinction risk. Nature 430:145–148.

Tibshirani, R. 1995. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society B 58:267–288.

Tsoar, A., O. Allouche, O. Steinitz, D. Rotem, and R. Kadmon.
2007. A comparative evaluation of presence-only methods for
modelling species distribution. Diversity and Distributions
13:397–405.

December 2008 3385UNCERTAINTY IN DISTRIBUTION ANALYSIS



Van Horne, B. 2002. Approaches to habitat modeling: the
tensions between pattern and process and between specificity
and generality. Pages 63–72 in J. M. Scott, P. J. Heglund,
M. L. Morrison, J. B. Haufler, M. G. Raphael, W. B. Wall,
and F. Samson, editors. Predicting species occurrences: issues
of accuracy and scale. Island Press, Washington, D.C., USA.

Van Vuuren, D. P., O. E. Sala, and H. M. Pereira. 2006. The
future of vascular plant diversity under four global scenarios.
Ecology and Society 11:25. hhttp://www.ecologyandsociety.
org/vol11/iss22/art25/i

Vaughan, I. P., and S. J. Ormerod. 2005. The continuing
challenges of testing species distribution models. Journal of
Applied Ecology 42:720–730.

Venables, W. N., and B. D. Ripley. 2002. Modern applied
statistics with S. Fourth edition. Springer, New York, New
York, USA.

Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears. 2007.
How much more rain will global warming bring? Science 317:
233–235.

Whittingham, M. J., J. R. Krebs, R. D. Swetnam, J. A. Vickery,
J. D. Wilson, and R. P. Freckleton. 2007. Should conserva-
tion strategies consider spatial generality? Farmland birds
show regional not national patterns of habitat association.
Ecology Letters 10:25–35.

Whittingham, M. J., P. A. Stephens, R. B. Bradbury, and R. P.
Freckleton. 2006. Why do we still use stepwise modelling in
ecology and behaviour? Journal of Animal Ecology 75:1182–
1189.

Wintle, B. A., M. A. McCarthy, C. T. Volinsky, and R. P.
Kavanagh. 2003. The use of Bayesian Model Averaging to
better represent uncertainty in ecological models. Conserva-
tion Biology 17:1579–1590.

Wood, S. N. 2006. Generalized additive models. Chapman and
Hall/CRC, New York, New York, USA.

Ye, J. 1998. On measuring and correcting the effects of data
mining and model selection. Journal of the American
Statistical Association 93:120–131.

APPENDIX A

Correlation matrix of the 12 (standardized) environmetal variables (Ecological Archives E089-193-A1).

APPENDIX B

Relationship between model complexity (expressed as model df) and mean test AUC (Ecological Archives E089-193-A2).

APPENDIX C

Complex models make slightly more conservative predictions of climate change effects (Ecological Archives E089-193-A3).
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