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a  b  s  t  r  a  c  t

Land-use  intensification  has  led  to  a landscape  mosaic  that  juxtaposes  human-managed  and  natural
areas. In  such  human-dominated  and  heterogeneous  landscapes,  spillover  across  habitat  types,  espe-
cially  in  systems  that  differ in  resource  availability,  may  be  an  important  ecological  process  structuring
communities.  While  there  is  much  evidence  for  spillover  from  natural  habitats  to  managed  areas,  little
attention has  been  given  to  flow  in  the  opposite  direction.  This  paper  synthesizes  studies  published  to  date
from five  functionally  important  trophic  groups,  herbivores,  pathogens,  pollinators,  predators,  and  seed
dispersers,  and  discusses  evidence  for spillover  from  managed  to natural  systems  in  all  five  groups.  For
each of  the  five  focal groups,  studies  in  the  natural  to  managed  direction  are  common,  often  with  multiple
review articles  on each  subject  which  document  dozens  of  examples.  In  contrast,  the  number  of  studies
which  examine  movement  in  the managed  to  natural  direction  is  generally  less  than  five  studies  per
trophic  group.  These  findings  suggest  that  spillover  in  the  managed  to  natural  direction  has  been  largely
underestimated.  As habitat  modification  continues,  resulting  in increasingly  fragmented  landscapes,  the
likelihood  and  size  of  any  spillover  effect  will only  increase.

Published by Elsevier B.V.
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1. Introduction

Land-use intensification at habitat and landscape scales over the
last century is the major driver of global environmental change
in terrestrial ecosystems (Sala et al., 2000). Ecological research
focused on landscape effects has increased over the last decade,
and, edge effects in particular are likely to become increasingly
important as habitat loss increases the extent and types of edges,
and thus the probability of dispersal of organisms across habitats.
Recent work shows that edge influences on insect communities
can penetrate long distances (>1 km)  into adjacent habitats, sug-
gesting that edge effects are likely to have much more pervasive
impacts than has been generally appreciated, even for small bod-
ied organisms such as insects (Fahrig, 2003; Ewers and Didham,
2008).

Although ecological coupling via exchanges of energy and
organisms among different habitats can have important impacts
on a variety of ecosystem functions (McCoy et al., 2009), the mech-
anisms that determine how different habitats affect one another
are still poorly understood. Examples of interconnected habi-
tats include the importance of resource spillover from marine
environments in determining community composition in coastal
terrestrial systems (Polis et al., 1997) or ‘predation shadows’, cast
by organisms with complex life histories (e.g. dragonflies or frogs),
connecting spatially distinct ecosystems (McCoy et al., 2009). The
literature on edge effects coupled with work on the food web
consequences of cross-boundary subsidies (Polis et al., 1997), pro-
vide a key insight underlying our review – that external influences
are often important drivers of community structure and dynamics
within focal habitats. Here, we make the case that mass movement
of organisms between habitats, i.e.,  across-habitat spillover, often
affects trophic interactions in complex landscape mosaics.

This review focuses on functional spillover, defined as move-
ment that results in the function of an organism (e.g. pollination,
herbivory) no longer being fulfilled in the habitat where the organ-
ism comes from but in the habitat where the organism moves to.
Spillover effects can be both positive and negative. We  use the
example of pollinator spillover between natural grassland areas
and managed crops to illustrate this point. At the time of mass
flowering of managed crops pollinators moving from natural to
managed areas may  have a negative effect on native grassland plant
species with overlapping flowering periods (reduced seed set due to
loss of pollination services), and a positive effect (increased seed set
due to increase in pollination services) on managed crops (Fig. 1A).
If pollinators gain a supplementary nectar or pollen source in mass
flowering managed crops, and at the end of crop flowering events
move back into natural grassland areas, spillover can have a positive
effect on native grassland species (Fig. 1B).

Spillover of generalist natural enemies, such as predators and
herbivores, from managed to natural habitats is likely to be an
important process affecting prey populations in adjacent natural
systems (Tscharntke et al., 2005; Rand et al., 2006). A previous
review of the literature for insect predators reveals that such pro-
cesses have been understudied, especially when compared with the
relatively abundant literature examining flow in the opposite direc-
tion, i.e.,  from natural to agricultural habitats (Rand et al., 2006).

Here, we assess the evidence indicating a potential for spillover
effects by reviewing the literature across a broad range of function-
ally important trophic interactions, including both antagonisms
(herbivory, disease, and predation) and mutualisms (pollination,
seed dispersal), in both directions across the managed-natural sys-
tem interface. The objectives of this review are first to summarize
the literature examining spillover in the relatively well investigated
direction from natural to managed systems; second, to review all
studies in the opposite (managed to natural system) direction and
discuss the potential functional importance of spillover effects in
this direction. This review concludes by weighing the balance of evi-
dence for or against the suggestion from previous work (Rand et al.,
2006) that the importance of spillover from managed to adjacent
natural habitats has been understudied (Fig. 2).

2. Methods

For each focal group in the natural to managed system direction,
studies from the most recently published reviews were sum-
marized. To assess the evidence of spillover in the managed to
natural direction computer searches using ISI Web  of Knowl-
edge and Google Scholar were conducted separately for each focal
group. Keywords included: (focal group) + spillover; movement;
mass effects; subsidies; edge effects; or landscape ecology. No
limits were imposed with respect to the year of publication or spe-
cific journals. Due to the small number of publications explicitly
addressing spillover in the managed to natural system direction; a
quantitative review was not possible.

From the literature search results, we  ultimately selected stud-
ies that fell within the scope of the following definitions. We
defined spillover as the movement of organisms from one distinct
habitat type, or population (in the case of pathogen spillover), to
another. The meaning of natural and managed habitats is context
and site specific, especially when comparing highly managed Euro-
pean landscapes to North America. For the purposes of this review
natural habitats were defined as areas (or populations) that are not
intensively managed (e.g. wild dogs, native forests, marshes, and
semi-natural habitats such as hay meadows, and woodlots), and
managed habitats as agricultural and other intensively managed
systems (e.g. domesticated livestock, annually harvested systems
dominated by cultivated plants). The focus of this review is pri-
marily on how movement influences function in recipient habitats.
The “organisms” in the title were limited to animals and pathogens.
Although potentially important, plant spillover, and its influence on
function, is beyond the scope of this review.

3. Focal groups

3.1. Herbivores

3.1.1. Spillover from natural to managed systems
Studies documenting herbivore movement from natural areas

to adjacent agricultural fields are increasingly common. Much of
the older agricultural literature discusses semi-natural habitat as a
“reservoir” of pests (Norris and Kogan, 2000). More than 70 families
of arthropods known to be potential crop pests are associated with
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A
oilseed rape

Natural habitat

seed production plant reproduction
-

Managed habitat

B
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grassland
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+

+

Fig. 1. (A) Pollinator spillover from natural/semi-natural to managed systems during oilseed rape blooming. (B) Pollinator spillover from managed to natural systems after
oilseed  rape blooming.

non-crop vegetation or “weeds” (Norris and Kogan, 2000). Over
100 studies which investigate the interactions between host weed
species and pest arthropods are cited in Norris and Kogan (2000).
Field margins, hedgerows, and other natural areas adjacent to man-
aged fields are examples of habitats which host a large variety of
pests (Burgess, 1981; Gravesen and Toft, 1987). Herbivores which
move from natural areas to agricultural fields and feed on weed
species could be considered beneficial (Hatcher and Paul, 2001).

3.1.2. Spillover from managed to natural systems
Although currently only a few studies have investigated the

movement of herbivores from managed to natural systems, ecol-
ogists now recognize the potential detrimental effects of spillover
of large populations of herbivores subsidized on agricultural crops
to native plants in increasingly small semi-natural habitat frag-
ments. The first study that directly measured this phenomenon
investigated the effects of dispersal of adult corn-rootworm bee-
tles, Diabrotica baraberi S., from corn to native sunflower species
in endangered tallgrass prairie ecosystems (McKone et al., 2001).
The authors consistently found higher densities of D. baraberi in
native sunflowers in natural prairie patches near the edge of corn
fields. Although the abundance of D. baraberi was greatest at the
corn edge (D. baraberi abundance was reduced by 80% 60 m from
corn edge), no part of prairie patches studied were completely free
of D. baraberi. Pollen feeding by D. baraberi was found to reduce
seed set of native sunflower species, suggesting that this agricul-
tural pest may  interfere with the reproduction of native sunflowers
and other late flowering composites.

In Newfoundland, Canada, a more recent example looked at the
threat that rare, native, non-agricultural Brassicaceae species face
from Plutella xylostella L. (diamondback moth) spillover from agri-
cultural Brassicaceae (Squires et al., 2009). In the study area, typical
agricultural host plants such as cabbage occur only in small patches.
Thus when P. xylostella arrives by wind dispersal from large agri-
cultural Brassicaceae fields further south, (P. xylostella is an annual
migrant in Canada during the growing season) their populations
are sustained on the rare, native, and non-agricultural Brassicaceae
species Braya longii F. and Braya fernaldii A. Plutella xylostella lar-
vae were first seen on B. longii and B. fernaldii in 1995. In the sites
studied, 45–50% of B. longii and B. fernaldii fruit were damaged
by P. xylostella herbivory, leading to a 60% decrease in seed set
among plants with damaged fruit (Squires et al., 2009). The loss
of seeds is of particular importance because B. longii and B. fernaldii
have long-lived seed banks and large plants contribute dispropor-
tionately to the seed bank. Plutella xylostella larvae were the only
insects observed feeding on B. longii and B. fernaldii leaves or fruit.
B. longii mortality has been linked to previous leaf and fruit dam-
age, presumably because P. xylostella feeding weakens the plant so
that death is more probable in subsequent years. In Mauritius, an
introduced pest species of cultivated coffee, Prophantis smaragdina
B. (coffee berry moth), has been found feeding on Bertiera zaluza-
nia G. with detrimental effects on the reproductive success of this
endangered endemic plant (Kaiser et al., 2008).

Although the three studies discussed above are the only exam-
ples found where the functional consequences of spillover were
explicitly measured, previous work demonstrating broad host
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Fig. 2. Spillover of five functional groups at the interface between managed and natural systems. Left hand side of each box represent managed habitats, right side represents
natural  habitats. Arrows with numbers between left and right sides indicate the number of studies in each direction. Although we  did not complete an exhaustive quantitative
analysis of spillover in the natural to managed direction, the numbers we  report in figure 2 for this direction were taken from review papers for each group. For each group
we  counted all studies from the most recent published review that show spillover. Numbers for this direction are therefore conservative, but prove our point. Refer to the
reviews  in the text for more detailed discussions of studies in this direction.

ranges in many insects, with host plants present in multiple habi-
tat types, suggests that spillover effects are likely widespread.
Examples include aphids, of which at least 10% show host-plant
alternation and movement from non-agricultural to agricultural
plant species has been well documented (Mueller and Godfray,
1999) and a number of broadly distributed pest species have
been found to feed on native plants in the U.K. (Mueller et al.,
1999); grasshoppers which display cyclical movement from grass-
land into winter wheat fields in the early spring, and then back
into native grassland systems once the crop matures (Gillespie
and Kemp, 1996); the sunflower moth, Homoeosoma electellum H.,
which attacks both native and agricultural Helianthus species (Chen
and Welter, 2002); and the tarnished plant bug (Lygus rugulipennis
P.) which has been recorded on 437 plant species in 57 families
(Holopainen and Varis, 1991).

There are also a number of examples of managed herbivores
spilling over to affect native plants in the biological control lit-
erature. Rhinocyllus conicus F., a Coleopteran thistle specialist

introduced to control exotic species, has been found to spillover
from its weedy invasive host species onto multiple non-target
native species, resulting in increased attack and reduced seed pro-
duction of native thistles (Louda et al.,  1997; Louda, 1998; Rand and
Louda, 2004). Cactoblastis cactorum B., introduced for weed biolog-
ical control in Australia, has since invaded North America and now
threatens endangered native cacti (Stiling et al., 2004). Vertebrate
herbivores may  also be influenced by landscape change. In forest
habitats, seed recruitment and survival of native tree species may
be affected by spillover of vertebrate seed predators. In Spain large
oak forests have been reduced to small fragments within a matrix of
agricultural fields. In the fall, after fields are ploughed, small mam-
mals migrate from the barren fields to over-winter in small forest
stands and are responsible for high acorn consumption in these
areas (Santos and Telleria, 1997). In central Chile, native granivores
are more abundant in forest fragments surrounded by managed
pine plantations than in the un-fragmented forest areas (Donoso
et al., 2004).
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3.2. Pathogens

3.2.1. Spillover from natural to managed systems
Current epidemiological theory is increasingly concerned with

understanding disease ecology in multiple host systems (Power
and Mitchell, 2004). Disease movement from semi-natural habi-
tats to domesticated animals and plants is documented (Daszak
et al., 2000; Power and Mitchell, 2004). In the epidemiological lit-
erature, spillover is explicitly discussed, but it lacks the inherently
spatial perspective that we use to define spillover in the other func-
tional groups reviewed. In the case of pathogens, managed systems
refer to actively managed host populations, and natural systems to
non-managed natural populations. Native plant and animal pop-
ulations are often cited as reservoirs of disease. Cleaveland et al.
(2001) found that 77% of pathogens infecting mammalian livestock,
and 90% of the pathogens infecting domestic carnivores, were gen-
eralists and could attack multiple host species.

The agronomy literature contains many important examples
of spontaneous species in natural habitats serving as reservoirs
for crop diseases (Wisler and Norris, 2005). In contrast, pathogen
spillover can have a positive effect on biological control in agricul-
tural systems when the organisms attacked are pest species rather
than the crop plants. Recent advances in conservation biological
control have focused on the potential benefits of managing extra-
field habitats to promote spillover of beneficial entomopathogens
into agricultural fields (Pell et al., 2008).

3.2.2. Spillover from managed to natural systems
A recent prominent example of disease movement in the man-

aged to natural direction looks at the spillover of pathogens from
domesticated to wild pollinators. Interest in this case is particularly
high because of reported declines in bee species and the ecosystem
services they provide (Biesmeijer et al., 2006; Potts et al., 2010;
Cameron et al., 2011). A number of commercially reared Bombus
spp. are used commonly as greenhouse pollinators of at least 20
crop species. (Velthuis and van Doorn, 2006). Infected commer-
cial bumble bees can escape from greenhouses and forage on food
sources that they share with wild individuals of the same species or
other Bombus spp., infecting the wild species with Crithidia bombi
T., an intestinal parasite (Lipa and Triggiani, 1988; Otterstatter and
Thomson, 2007). In Canada, evidence for Bombus spp. decline has
been quantified, and although it is likely that there are a number
of driving factors, pathogen spillover from commercial colonies
is thought to be a major culprit (Colla and Packer, 2008). An
experiment on the same system examined the prevalence of four
pathogens in wild bumble bee populations at locations near and
distant to commercial greenhouses in southern Ontario, Canada.
Bumble bees collected near commercial greenhouses were more
frequently infected by those pathogens capable of being transmit-
ted at flowers (C. bombi and N. bombi)  than bees collected at sites
away from greenhouses (Colla et al., 2006). Scientists in Australia
have argued successfully to prevent the importation of Bombus spp.
as greenhouse pollinators due to the risk of disease transfer from
Bombus to managed and wild Apis species (gov. report, personal
comm.  S. Cunningham). Australia’s high levels of endemic species
pose special concerns when thinking about spillover. In Australia,
where many agricultural crops rely on high levels of pollination
from wild Apis mellifera L., spillover of the invasive Varroa destruc-
tor A. from domesticated bee colonies is a concern, but viewed by
bee keepers as inevitable (Cook et al., 2007).

Pathogen spillover in vertebrates also provides well-
documented examples of how anthropogenic change can
negatively impact wildlife, although pathogen effects on wildlife
are under researched (Daszak et al., 2000). Endangered African
wild dog and Ethiopian wolf populations have been seriously
threatened by rabies, and although we are missing direct evidence,

the authors argue that spillover from domestic dogs is almost cer-
tainly the cause (Gascoyne et al., 1993; Sillero-Zubiri et al., 1996;
Knobel et al., 2008; Lembo et al., 2008). Lembo et al. (2008) adds
evidence to the spillover argument by showing that the reservoir
of rabies in the Serengeti ecosystem is a complex multi-host com-
munity where domestic dogs are the only population essential for
persistence, although other carnivores contribute to the reservoir
as non-maintenance populations. After a 2000–2002 foot and
mouth disease outbreak in domestic livestock in Mongolia, a study
in 2001 found the disease in over half of the Mongolian gazelles
sampled and authors believe spillover of the virus from domestic
animals was  the likely cause of the outbreak (Nyamsuren et al.,
2006).

Studies of pathogen spillover from domesticated to wild plants
are relatively rare. In a review on pathogen spillover, Power and
Mitchell (2004) argue that this is due in part to the relative lack of
data on pathogens in natural plant populations (Jarosz and Davelos,
1995). In California, the invasion of native grasslands by a vari-
ety of Eurasian grasses provides an example of pathogen outbreaks
brought by anthropogenic change. Herbarium records document
the presence of barley and cereal yellow dwarf viruses, (Luteoviri-
dae B/CYDV) in samples from the time period of historical invasion,
suggesting that apparent competition mediated by B/CYDV may
have facilitated grassland invasion (Malmstrom et al., 2007). In
the same system, a recent experimental study found that grazing
by vertebrates increases the density of host plants infected with
aphid-vectored B/CYDV four-fold, which translates to higher viral
prevalence (Borer et al., 2009). The prevalence of some strains of
B/CYDV in wild grasses is highly dependent on their proximity to
crop hosts (Remold and Power, 1995).

Collectively, the pathogen literature provides perhaps the best
data documenting the importance of anthropogenically mediated
spillover from domesticated to wild plants and animals. Nonethe-
less, in most cases, we  are still lacking quantitative data which
unequivocally shows spillover as the process.

3.3. Pollinators

3.3.1. Spillover from natural to managed systems
Movement of pollinators from natural to managed agricul-

tural landscapes has been documented on six continents across a
wide range of habitat and managed landscapes (Liow et al., 2001;
Garibaldi et al., 2011). In each of these cases various pollinating
insect species are moving from semi-natural land fragments to agri-
cultural fields. Managed and wild pollinating species can provide
effective pollination services in many cropping systems, in both
temperate and tropical habitats (Klein et al., 2007). Blueberry and
watermelon crops are well known examples illustrating the impor-
tance of native pollinators. Watermelon is visited by over 30 species
of native bees in addition to Apis mellifera in California (Kremen
et al., 2002) and at least 47 species in New Jersey (Winfree et al.,
2007). Blueberries are effectively pollinated by native bees across a
variety of sites (Cook et al., 2007; Isaacs and Kirk, 2010). Exam-
ples from tropical regions include rainforest habitats providing
sources of pollinating bees for coffee agroecosystems in Indonesia
(Klein et al., 2003), Costa Rica (Ricketts, 2004), and Brazil (De Marco
and Coelho, 2004); pollinating beetles for atemoya (Blanche and
Cunningham, 2005); stingless bees in Longan orchards (Blanche
et al., 2006) in Queensland; and ants in mango orchards in South
Africa (Carvalheiro et al., 2010).

3.3.2. Spillover from managed to natural systems
Although the importance of the movement of pollinators from

semi-natural land to more heavily managed agricultural land is well
documented in recent reviews (Aizen and Feinsinger, 1994b; Klein
et al., 2007; Ricketts et al., 2008; Garibaldi et al., 2011), we are
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still missing an important piece of the puzzle; there are remark-
ably few studies on the effects of the movement of pollinators
in the other direction. It seems likely that pollinator movement
through the mosaic landscape of crop and noncrop habitats have
an impact on the sexual reproduction of wild plants in embedded
natural habitat fragments (Lander et al., 2011). We  know that many
pollinating species cannot complete their life cycles in agricultural
fields. Many bee species use nesting sites in semi-natural habitats
and forage for pollen and nectar resources in spatially separated
areas, which often include a mixture of disturbed and un-disturbed
habitats (Williams and Kremen, 2007). A number of studies show
that pollinators visit crop habitats for foraging, but that they must
return to natural habitat areas to complete their reproductive cycle
because of the frequent disturbance regime in agricultural fields
(Hayter and Cresswell, 2006; Greenleaf et al., 2007; Holzschuh
et al., 2007; Kremen et al., 2007; Winfree et al., 2007). From these
studies we can infer that pollinators are using, and maybe even
relying on, resources from crop fields, and then returning to nat-
ural habitat fragments. The role of supplementary resources from
agricultural habitats in promoting bee populations, and the poten-
tial costs and benefits of these resources to wild plant populations
have rarely been measured (but see Lander et al., 2011). A recent
study from Kenya suggests that bee species-rich farmland might
have a positive effect on nearby rain forest fragments by acting
as a “pollinator rescue” that supports pollination services inside
the natural forest (Hagen and Kraemer, 2010). The authors mea-
sured network properties (network size and specialization indices)
and bee species turnover at 18 sites in a tropical forest-agriculture
mosaic in Western Kenya. The largest networks, highest diversity,
and largest abundances of bees were found at the forest edge and
in the farmland that hosted higher amounts of flowers and a more
homogeneous distribution of resources in space and time when
compared to forest sites (Hagen and Kraemer, 2010).

Such spillover effects involving pollinators could result from the
interactions of managed honey bees (brought in to provide pollina-
tion services to agricultural crops) with wild plants in semi-natural
areas adjacent to fields. For example, a study which monitored both
wild pollinators and managed honeybee visits on native plants
found that the managed honeybees visit 24 of the 43 species of
flowering native plants found on the edges of agricultural land
(Tuell et al., 2008), possibly contributing to increases in plant
fitness. In some systems, honeybee populations from modified
habitats may  partially compensate for the declines of native pol-
linators in natural habitat fragments, but this is not always the case
(see Garibaldi et al., 2011). For example while the frequency and
richness of native pollinators visiting native tree species declined
with decreasing fragment size, the frequency of wild honeybee
visits increased, such that total visitation frequency varied little
with fragmentation (Aizen and Feinsinger, 1994b).  Similarly, at
least four out of ten self-incompatible native forest plant species
studied were heavily visited by honey bees in small habitat frag-
ments, which may  have compensated for declining visitation by
native pollinators (Aizen and Feinsinger, 1994a).  These studies
strongly suggest that some native plant species may  benefit from
the spillover of bees from managed systems into habitat frag-
ments.

Mass flowering of crops could potentially facilitate pollination
in semi-natural land if the crops serve as “magnet plants”. Recent
studies found that mass-flowering of rape increases the growth of
bumble bee colonies (Westphal et al., 2009). This concentrates pol-
linators in the vicinity of mass-flowering agricultural fields, and
facilitates spillover into natural areas. The magnet crops might
also provide resource subsidies that would allow increases in local
pollinator population size the following year. Similarly, a high den-
sity of arable fields supporting high weed cover, as often found in
organic agriculture, can increase bee populations on a landscape

scale, thereby enhancing potential pollination in near-natural fal-
lows (Holzschuh et al., 2008).

Alternatively, flower visitation, pollen transfer, and seed set of
wild plants could be adversely affected by competition for polli-
nators with cultivated crops similar to the competition between
native and invasive plants (Lopezaraiza-Mikel et al., 2007; Aizen
et al., 2008; Lander et al., 2011). During the typical periods
of mass flowering of crops, this competition between natural
plants and agricultural crops could lead to a lack of pollination
services in natural habitats and could be especially severe for
rare plants in conservation areas adjacent to agricultural fields
(Steffan-Dewenter and Westphal, 2008; Holzschuh et al., 2011).
Furthermore, agricultural habitats may  differentially benefit cer-
tain pollinator species, such as honey or bumblebees, resulting in
competition with native solitary bees which could be more effi-
cient pollinators of some wildland plants, but evidence is scarce
(Steffan-Dewenter and Tscharntke, 2000).

Overall, these examples provide clear evidence that pollinators
are moving across crop/non-crop interfaces. Agricultural and other
managed landscapes surely affect the pollinator-plant interactions
of adjacent natural habitats. We  therefore need to understand how
mass-flowering crops and the introduction of managed pollinators
to agricultural fields affect pollinator interactions and pollination
services in natural habitats.

3.4. Predators

3.4.1. Spillover from natural to managed systems
Crop habitats can be hostile environments for many natural

enemies and predators of insect herbivores (Kleijn et al., 2001;
Meek et al., 2002), which as a result often rely on surrounding
natural areas for their persistence. A number of reviews find evi-
dence that such natural and semi-natural areas provide alternative
energy sources and host species, as well as over-wintering and nest-
ing habitats, thereby promoting populations of important natural
enemy species moving into agricultural fields (Landis et al., 2000;
Tscharntke et al., 2005; Bianchi et al., 2006; Rusch et al., 2010).
Proximity to habitat edges may  also then have an impact on insect
herbivores in less productive semi-natural habitats as natural ene-
mies spillover from more productive habitats (Rand et al., 2006;
McCoy et al., 2009). Despite many studies looking at the effects of
landscape composition and proximity to edges on natural enemy
abundance, composition or diversity, comparatively few actually
measure the functional implications of such spillover, i.e. effects on
pest suppression and crop injury levels (Bianchi et al., 2006; Chaplin
Kramer et al., 2011).

3.4.2. Spillover from managed to natural systems
Spillover of subsidized natural enemies across managed-to-

natural habitat edges is likely to be an important process affecting
prey species (Rand et al., 2006). Avian nest predation is one area
which has a large body of literature assessing these dynamics.
Although there have been no fewer than six review papers (Paton,
1994; Andrén, 1995; Hartley and Hunter, 1998; Soderstrom, 1999;
Chalfoun et al., 2002; Lahti, 2009) on the subject in the last two
decades, this literature has not succeeded in producing a consensus
as to what effect being near a habitat edge has on nest preda-
tion. Some nest predation studies mention spillover of predators
as the suggested mechanism leading to increased predation pres-
sure near edges, but none have actually quantified this suggestion
(Lahti, 2001, 2009). Few studies from other groups have looked
into this phenomenon by directly measuring the movement of nat-
ural enemies from agricultural to semi-natural areas, and none
have attempted to measure the direct and/or indirect impact this
movement of predators and parasitoids has on herbivores or plants
in these natural habitat fragments. One study measures spider
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activity density in wheat fields and adjacent natural semi-desert
in Israel. The authors argue that their data showed a strong prefer-
ence among sheetweb spiders for agricultural habitat that supports
the conclusion that in these semi-desert habitats, sheetweb spiders
are moving from wheat fields to adjacent semi-natural desert lands
(Pluess et al., 2008). Another study found that wheat-dominated
landscapes appear to augment generalist predators (ladybird bee-
tles and spiders) of nettle aphids resulting in dramatically higher
natural enemy–prey ratios and reduced aphid density in adjacent
nettle patches (Rand and Tscharntke, 2007).

3.5. Seed dispersers

3.5.1. Spillover from natural to managed systems
In deforested landscapes, seed dispersal is a critical factor for

tree succession (Holl, 2002; Marcano-Vega et al., 2002). Low immi-
gration of forest seeds is considered the overriding factor impeding
reestablishment of forest in disturbed areas (Da Silva et al., 1996;
Duncan and Chapman, 1999; Ingle, 2003). In fragmented, human-
dominated landscapes, frugivorous birds and bats are the most
important biotic seed dispersal vectors, because habitat types such
as grassland or early successional vegetation pose less of a bar-
rier to them than to other vectors (Ingle, 2003). For example, in
a Philippine montane rainforest frugivorous birds disperse more
forest seeds in successional habitats than any of the other stud-
ied dispersal species, and seed input declined with distance from
source habitat (Ingle, 2003). Seed input into disturbed habitats,
such as abandoned pastures, usually steeply declines with distance
from source habitats (Howe and Westley, 1997). There is a grow-
ing consensus that small patches of forested habitats embedded in
a matrix of agricultural land contribute to maintaining biodiversity
as well as increasing the efficiency of birds as dispersers in a mosaic
landscape (Lozada et al., 2007; Garcia et al., 2010).

3.5.2. Spillover from managed to natural systems
We found no studies which explicitly measured spillover of seed

dispersers from managed to natural systems, but we  discuss studies
that highlight the potential for spillover effects in this group. Similar
to pollinators subsidized by agricultural crops, seed dispersers may
profit from landscape matrix quality (Murphy and Lovett-Doust,
2004). A diversity of land-use systems can have an impact on seed
dispersers, especially in the tropics (Garcia and Banuelos, 2003).
Examples include studies showing that bats are less abundant in
tropical forest fragments surrounded by pastures as compared to
fragments embedded in a more structurally complex cocoa and cof-
fee agricultural area (Estrada and Coates-Estrada, 2002). Similarly,
in agricultural landscapes of Ecuador, abandoned and managed cof-
fee sites are much more common than forest patches, and they
provide a refuge for plant and bird species (Lozada et al., 2007).

In mosaic landscapes, where the vast majority of natural forest
has been replaced by agricultural land, agroforestry systems offer
birds stepping-stones and thereby reduce reproductive isolation,
enhancing tree recruitment (Lozada et al., 2007). Remnant trees in
pastures are often used as perches and foraging canopies which can
foster seed dispersal from pasture to forest (Galindo-Gonzalez et al.,
2000; Laborde et al., 2008; Herrera and Garcia, 2009). Seed dispersal
by avian frugivores is more frequent among patches connected by
linear habitat patches than in isolated patches (Tewksbury et al.,
2002). Other groups of seed dispersers such as carabid beetles
or mammals which disperse seeds on their fur are also likely to
be important, but we found no studies on spillover from these
groups. In human-dominated landscapes, patterns of plant recruit-
ment and plant community succession are strongly influenced by
seed spillover across all kinds of habitats, but we lack detailed and
quantitative landscape-scale studies that measure spillover.

4. Discussion

In all five functional categories reviewed (herbivores,
pathogens, pollinators, predators, and seed dispersers), we
find direct evidence for influential cross-habitat effects. While the
studies are too diverse to be formally used in a quantitative review,
the evidence supporting important managed to natural system
spillover is far from anecdotal. For each of the five focal groups at
least one review paper containing 30 or more studies examines
movement in that natural to managed direction. In contrast, the
number of studies for each focal group which examine movement
in the managed to natural direction is generally less than five
studies per group (Fig. 2).

We expect that spillover is more likely in areas with small-
scale agriculture, typically found in western Europe and in many
parts of the tropics (typically with a mosaic of closely associated
crop and noncrop ecosystems), than in large-scale agriculture of
North America or Australia – but detailed evidence is missing.
Indeed, the examples which document spillover in the managed
to natural direction come from diverse geographic areas, biomes,
management types, but all have in common that they occur in areas
with significant percentages of natural land (Table 1). The spillover
organisms from the studies in the natural to managed direction are
also overwhelmingly (>80%) generalists (Table 1). This finding is
not surprising, and again, although there are not enough studies
to make conclusions we  predict that spillover will be more likely
among generalist than specialist organisms.

All of the examples of positive effects of managed on natural
habitats are confined to the two mutualisms, pollination and seed
dispersal in highly fragmented landscapes. In both cases the avail-
able evidence suggests that managed habitats could be important
sources of mutualists providing services to wildland plant species
in the face of natural habitat loss. We  find no studies examining the
potential benefits of antagonists spilling over from managed to nat-
ural systems, although the possibility for positive interactions does
exist. Potentially interesting research along these lines might, for
example, address the role of cropping systems as potentially impor-
tant sources of herbivores spilling over and suppressing weedy
plant species in adjacent natural habitats. As we noted earlier, Bras-
sica crops share herbivores with wild Brassica species, which can
have detrimental effects on rare native brassicas in Canada (Squires
et al., 2009). However, many Brassica species in North America are
weedy or invasive, such that similar herbivore spillover could actu-
ally be beneficial in these cases. Similar arguments may hold true
for other antagonists in crops that are likely to be particularly detri-
mental to exotic, rather than native, species in natural habitats.

Direct and indirect interactions among trophic groups and
across feeding guilds are now increasingly recognized as important
in structuring ecological communities (Wootton, 2002; Kaplan and
Denno, 2007). Although all the managed-to-natural studies we  dis-
cuss measure the direct functional effects of spillover of one focal
group, indirect interactions among focal groups are likely to be
common as well.

It is clear that studies that examine spillover effects from man-
aged to natural systems are rare across the board, and there
does seem to be a bias towards studies focused on the negative
effects. One explanation for this bias may  be that managed sys-
tems are often highly disturbed and thought to support only few,
disturbance resistant, species. As a consequence they are not gen-
erally regarded as meaningful sources of organisms potentially
moving over into natural systems. Indonesian homegardens, for
example, may include 100–200 crop species and noncrop plants
within arable fields and include endangered species (Gabriel et al.,
2006). Furthermore, managed systems are often highly produc-
tive, thereby providing abundant resources that may  be used by
non-agricultural species (Westphal et al., 2003).
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Table  1
Details of studies found in the managed to natural direction.

Study Focal group Country Spillover organism Specialist/generalist

Kaiser et al. (2008) herbivore Mauritius Prophantis smaragdina (coffee
berry moth)

generalist

McKone et al. (2001) herbivore USA (Kansas) Diabrotica virgifera (corn
rootworm)

generalist

Squires et al. (2009) herbivore Canada Plutella xylostella (diamond
back moth)

generalist

Gascoyne et al. (1993) pathogen Ethiopia Rabies virus generalist
Knobel et al. (2008) pathogen Ethiopia Rabies virus generalist
Lembo et al. (2008) pathogen Ethiopia Rabies virus generalist
Lipa  and Triggiani (1988) pathogen Canada Crithidia bombi specialist
Nyamsuren et al. (2006) pathogen Mongolia Foot and Mouth disease generalist
Otterstatter and Thomson (2007) pathogen Canada Crithidia bombi specialist
Sillero-Zubiri et al. (1996) pathogen Ethiopia Rabies virus generalist
Aizen and Feinsinger (1994a) pollinator Argentina Apis mellifera generalist
Aizen and Feinsinger, 1994b pollinator Argentina Apis spp. generalist
Holzschuh et al. (2011) pollinator Germany Bombus spp. generalist
Pluess et al. (2008) predator Israel Spiders (94 spp.) generalist
Rand and Tscharntke (2007) predator Germany Spiders and Coccinelld beetles generalist
Rand and Louda (2004) predator USA (Nebraska) Rhinocyllus conicus specialist
Estrada and Coates-Estrada (2002) seed disperser Mexico Bats (50 spp) generalist
Galindo-Gonzalez et al. (2000) seed disperser Mexico Bats (20 spp) generalist
Laborde et al. (2008) seed disperser Mexico Vertebrate frugivores generalist
Herrera and Garcia (2009) seed disperser Spain Birds generalist
Tewksbury et al. (2002) seed disperser USA (South Carolina) Birds generalist

Although many studies support the conservation view that nat-
ural systems provide benefits to managed systems, especially as
sources of pollinators and biological control agents, cases of nat-
ural disservices are also common. The high value humans place
on agricultural products likely leads to an immediate reporting
and investigation of negative effects of spillover from natural to
agricultural systems. This is evidenced by the long tradition of agro-
nomic research looking at wildland plants as potentially important
sources of pathogens or herbivorous pests in cropping systems,
as well compensation payments to farmers for large predator and
herbivore conservation. In contrast, little attention is paid to the
wholesale collapse of wildlife populations due to increased contact
with managed systems (e.g. wildebeest).

5. Conclusions

We find that studies of spillover from managed to natural
systems have been generally underrepresented relative to those
examining flow in the opposite direction. In particular, the potential
positive effects of managed habitats for adjacent natural systems in
fragmented landscapes remain largely unstudied. There are numer-
ous examples of studies looking at spillover in the natural to
managed direction, perhaps not surprisingly, as this is likely to
impact human enterprises.

As humans continue to modify landscapes the likelihood and
size of any spillover effect will only increase. Empirical studies are
now crucial to provide quantitative evidence in each focal group
as well as across disciplines to fully understand the effects of this
phenomenon on natural communities.
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