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Abstract 

Collinearity refers to the non independence of predictor variables, usually in a regression-type 

analysis. It is a common feature of any descriptive ecological data set and can be a problem 

for parameter estimation because it inflates the variance of regression parameters and hence 5 

potentially leads to the wrong identification of relevant predictors in a statistical model. 

Collinearity is a severe problem when a model is trained on data from one region or time, and 

predicted to another with a different or unknown structure of collinearity. To demonstrate the 

reach of the problem of collinearity in ecology, we show how relationships among predictors 

differ between biomes, change over spatial scales and through time. Across disciplines, 10 

different approaches to addressing collinearity problems have been developed, ranging from 

clustering of predictors, threshold-based pre-selection, through latent variable methods, to 

shrinkage and regularisation. Using simulated data with five predictor-response relationships 

of increasing complexity and eight levels of collinearity we compared ways to address 

collinearity with standard multiple regression and machine-learning approaches. We assessed 15 

the performance of each approach by testing its impact on prediction to new data. In the 

extreme, we tested whether the methods were able to identify the true underlying relationship 

in a training dataset with strong collinearity by evaluating its performance on a test dataset 

without any collinearity. We found that methods specifically designed for collinearity, such as 

latent variable methods and tree based models, did not outperform the traditional GLM and 20 

threshold-based pre-selection. Our results highlight the value of GLM in combination with 

penalised methods (particularly ridge) and threshold-based pre-selection when omitted 

variables are considered in the final interpretation. However, all approaches tested yielded 

degraded predictions under change in collinearity structure and the “folk lore”-thresholds of 

correlation coefficients between predictor variables of |r| > 0.7 was an appropriate indicator 25 

for when collinearity begins to severely distort model estimation and subsequent prediction. 
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The use of ecological understanding of the system in pre-analysis variable selection and the 

choice of the least sensitive statistical approaches reduce the problems of collinearity, but 

cannot ultimately solve them.  

Keywords 30 

Partial least squares, penalisation, shrinkage, cluster analysis, principal component, variance 

inflation, condition number, machine-learning, dimensionality reduction, latent root 

regression 

Introduction 

Collinearity describes the situation where two or more predictor variables in a statistical 35 

model are linearly related (sometimes also called multicollinearity: Alin 2010). Many 

statistical routines, notably those most commonly used in ecology, are sensitive to collinearity 

(Belsley 1991, Chatfield 1995, Stewart 1987): parameter estimates may be unstable, standard 

errors on estimates inflated and consequently inference statistics biased. But even for less 

sensitive methods, two key problems arise under collinearity: variable effects cannot be 40 

separated and extrapolation is likely to be seriously erroneous (Meloun, et al. 2002, p. 443). 

This means, for example, that if we want to explain net primary productivity (NPP) using 

mean annual temperature and annual precipitation, and we find that temperature and 

precipitation are negatively linearly related, we will not be able to separate the effects of the 

two factors. Using one will partly explain the effect of the other. NPP might be limited only 45 

by precipitation but we may not be able to ascertain this relationship because temperature is 

collinear with precipitation: our model might contain both variables or perhaps only 

temperature. We will make incorrect inferences and prediction may be compromised. 

Suppose we want to predict the effect of climate change on NPP and our climate scenarios 



 

 5 

indicate no change in precipitation but an increase in temperature. Since our regression 50 

wrongly includes temperature, we would erroneously predict a change in NPP. 

Collinearity is a problem recognised by most introductory textbooks on statistics, 

where it is often described as a special case of model non-identifiability. As demonstrated in 

the example above, it cannot be solved: if two highly collinear variables are both correlated 

with Y, without further information the “true” predictor cannot be identified. Nevertheless, 55 

there are approaches for exploring it and working with it. Despite the relevance of the 

problem and the variety of available methods to address it, most ecological studies have not 

embraced measures to address collinearity (Graham 2003, Smith, et al. 2009). The main 

reasons for this are likely to be: (1) belief that common statistical methods are unaffected by 

collinearity; (2) uncertainty about which method to use; (3) unsuitability of a method given 60 

the type of data to be analysed; (4) lack of interpretability of results when using approaches 

that combine variables; or (5) inaccessible software. The issue is by no means restricted to 

ecology (e.g. Kiers and Smilde 2007, Mikolajczyk, et al. 2008, Murray, et al. 2006). 

In this paper we aim at facilitating better understanding of collinearity and of methods 

for dealing with it, by reviewing and testing existing approaches and providing relevant 65 

software. The review is structured into five parts. In the first we reflect on when collinearity 

is, or is not, a problem. The second illustrates spatio-temporal variation in relationships 

between environmental variables that are commonly used as explanatory variables in 

regression analyses. The third part introduces the different methods we review, starting with 

diagnostics, through “pre-analysis clean-up methods” to methods that incorporate collinearity 70 

or are tolerant to the problem (see Supplementary material Appendix 1.1 for details on their 

implementation). In the fourth part we carry out a large simulation study to compare all 

reviewed methods. We provide complementary case studies on real data in Supplementary 

material Appendix 1.2. The fifth part discusses our findings with respect to the scattered 

literature on collinearity. Most importantly it provides advice for the appropriate choice of an 75 
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approach and supporting information for its application (e.g. parameterization). Finally we 

close with suggestions for further research.  

Part I. When is collinearity a problem? 

To avoid ambiguity, we first clarify the meaning and context of collinearity that we are 

studying here. We are considering collinearity in the context of a statistical model that is used 80 

to estimate the relationship between one response variable and a set of predictor 

(“independent” or “explanatory”) variables. Examples include regression models of all types, 

classification and regression trees as well as neural networks. Ecologists might be interested 

in understanding the factors affecting some observed response, or they might want to fit a 

model (i.e. “train” it) and predict new cases. The impact of collinearity varies with 85 

application.  

In all real world data, there is some degree of collinearity between predictor variables. 

Collinearity exists for several reasons. Most commonly, collinearity is intrinsic, meaning that 

collinear variables are different manifestations of the same underlying, and in some cases, 

immeasurable process (or latent variable). For example, we could try to explain the jumping 90 

distance of a collembolan by the length of its furca, its body length or its weight. Since they 

are all representations of body size, they will all be highly correlated. Collinearity also arises 

in compositional data (data where the whole set of information is described by relative 

quantities: Aichison 2003), such as soil fractions which sum to 100% and hence are not 

independent of each other. More sand necessarily means less clay or silt. Collinearity may 95 

also be incidental, meaning that variables may be collinear by chance, for example when 

sample size is low, because not all combinations of environmental conditions exist in the 

study area or when very many variables are involved (as in hyperspectral remote sensing data, 

e.g. Schmidt, et al. 2004). It is important to highlight that the best way to deal with incidental 
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collinearity is to avoid it by a well-designed sampling strategy that covers representative 100 

geographic and environmental space. 

Perfect collinearity occurs if predictors are exact linear functions of each other (e.g. 

age and date of birth) and is simply a case of model misspecification - one variable needs to 

be omitted. Mathematically, collinearity in predictors is a case of extreme non-orthogonality 

and has several undesirable consequences in least squares regression (i.e. models of the form 105 

Y = Xb + e, with response vector Y, predictor set X, parameter estimates b and residual error 

e). In these, b is estimated as b = (XTX)–1XTY. Since the columns of the design matrix X are 

nearly linearly dependent, XTX is nearly singular and the estimation equation for the 

regression parameters is ill-conditioned. Therefore, parameter estimates b will be unstable, 

i.e. small changes in the data may cause large changes in b (Dobson 2002, p. 94). 110 

In traditional regression models, parameter estimation is a key part of model fitting 

and interpretation. Models are often used for hypothesis testing, probing the statistical 

significance of the effect of predictors on the response. High collinearity between predictors 

means that variables in the collinear set share substantial amounts of information. Coefficients 

can be estimated, but with inflated standard errors (see Wheeler 2007, for spatial regression 115 

examples). Small changes in the data set can strongly affect results so the model tends to be 

unstable (high variance), and the relative importance of variables is difficult to assess. The 

inflated errors result in inaccurate tests of significance for the predictors, meaning that 

important predictors may not be significant, even if they are truly influential (see Ohlemüller, 

et al. 2008, for an example where three hypotheses are indistinguishable due to collinearity). 120 

Problems are exacerbated if stepwise selection methods are used (Harrell 2001, Meloun, et al. 

2002), because if one, rather than another, collinear predictor is dropped from the model, the 

selection process may proceed on a wrong trajectory.  

Some of the newer modelling methods, especially those in machine learning where 

parameter estimation methods are quite different or where recursive partitioning provides the 125 
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basis for fitting the model, do not attempt to provide interpretable parameter estimates and 

standard errors (Hastie, et al. 2001). Nevertheless, they share with traditional methods the 

problems that the model is sensitive to slight changes in the data set, and that, as a 

consequence of variable contributions being spread across collinear sets, it is difficult to 

interpret the final model and to separate the effects of collinear variables (e.g. Shana, et al. 130 

2006).  

There are some situations in which the effects of collinearity have limited impact. If 

the main use of the model is to predict new cases within the range of the sampled data (i.e., to 

interpolate), the model will do this reliably as long as the collinearity between variables 

remains constant (Harrell 2001). However, extrapolation beyond the geographic or 135 

environmental range of sampled data is prone to serious errors, because patterns of 

collinearity are likely to change. Obvious examples include use of statistical models to predict 

distributions of species in new geographic regions or changed climatic conditions (Araújo and 

Rahbek 2006, Thuiller 2004), and these motivated our interest here in the problem of 

predicting to changed collinearity structures.   140 

What can we do about this? The most important step is to understand the problems of 

collinearity and to know your data well enough to be aware of patterns of collinearity in both 

training and prediction data sets. This paper aims to contribute substantially to this step and to 

compare methods for identifying and dealing with collinearity. Some other broad advice is 

relevant. In any regression-style model, the results will be most informative if predictors that 145 

are directly relevant to the response are used, i.e. proximal predictors are strongly preferable 

over distal ones (Austin 1980, Austin 2002). This general concept leads to careful 

consideration of candidate predictor sets in the light of ecological knowledge, rather than 

amassing whatever data can be found and challenging the model to make sense of it.  

However, are collinear variables necessarily redundant? No. For example, a butterfly 150 

larva feeding on a plant will profit from warm temperatures because it accelerates its 
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development, but also because the plant provides more food, since photosynthesis is 

temperature-dependent. Thus, both direct and indirect temperature effects and their collinear 

representations “degree-days” and “leaf photosynthetic activity” are ecologically proximal 

predictors and sound components of the response “larval size” (see also Hamilton 1987, for a 155 

statistical argument). However, as we illustrate in our simulation experiment, collinearity will 

not be problematic if the correct form of the functional relationship is known. For the 

butterfly example the collinearity problem may be minimized by representing the functional 

relationship in a structurally more realistic way, e.g. using Bayesian methods (e.g. Gelman 

and Hill 2007, HilleRisLambers et al. 2006). However, collinearity may bias parameter 160 

estimation in Bayesian approaches and extrapolation to different collinearity structures would 

still not be sensible.  

Part II. Spatio-temporal patterns in collinearity 

Recent interest in predicting to new times and places raises the question of the impact of 

changing collinearity structures for these applications. Collinearity between environmental 165 

variables is not constant in space (see Fig. 1, which uses Pearson correlation coefficients as an 

approximate indicator of collinearity). As an additional twist, collinearity in biogeographical 

data may differ across spatial scales, making it difficult to elucidate at which spatial scale 

each environmental driver is acting (Battin and Lawler 2006, Murwira and Skidmore 2005, 

Wheeler 2007). 170 

Consider, for example, the environmental information contained within a Landsat TM 

satellite image of the cereal-steppe habitats centred on Castro Verde in Baixo Alentejo, 

Portugal (Fig. 2). By applying principal components analysis to all seven wavelength bands 

(data re-sampled to 100 m pixels) we know that the correlation between any two components 

across the whole image must be zero. Yet within this, local correlations calculated within 175 
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moving windows of different sizes reveal complex and varying patterns of relatedness (Fig. 

2). 

 Temporal variations in the relationships between climatic variables span time scales 

from daily over seasonal to decadal fluctuations. Fig. 3 shows that correlations may vary by 

0.2 over decades, and even change their sign. Stronger correlations are less likely to vary as 180 

much, because they are causally linked and the causation does not change (e.g. the correlation 

between temperature and vapour pressure deficit, where the Pearson correlation coefficient r 

for these four stations is around 0.8, but the fluctuations only 0.1; data not shown). 

Part III. Methods for dealing with collinearity 

We do not think that the problem of collinearity can be solved, for logical reasons: without 185 

mechanistic ecological understanding, collinear variables cannot be separated by statistical 

means. Nevertheless, we might expect some approaches to be superior with regard to robust 

model fitting and prediction. As a general rule of thumb, a good strategy is to select variables 

that a) are ecologically relevant, b) are feasible to collect data on and c) are closer to the 

mechanism (in the sequence resource-direct-indirect-proxy variables: Austin 2002, Harrell 190 

2001). Then, if the statistical method suggests deleting an ecologically reasonable or 

important variable, prominence should be given to ecology. Despite such careful selection, we 

might still end up with a set of collinear variables, either because there are several 

ecologically important variables for a phenomenon under study (e.g. chemical composition of 

forage), or because we do not yet know which of the predictors are important. The key 195 

challenge is now to extract or combine variables meaningfully, as explored in the following 

sections. 

For technical details, types of response and predictor variables that can be used, key 

references and example studies in ecology please refer to the Supplementary material 

Appendix 1.1. Since the realm of regression methods is vast, we have focussed on methods 200 
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commonly used or likely to have promise; the review and following case study is not 

exhaustive. All code for data generation is available in the Supplementary material Appendix 

2 and interested readers can apply it to any method we failed to cover. The Supplementary 

material Appendix 1.3 contains a short outline on a number of excluded approaches.  

1. Detect it: diagnostics 205 

When are variables collinear? The statistical literature offers several quantifications of 

collinearity (Table 1), with the most common being the pairwise correlation coefficient (r), 

the condition index (the square root of the ratio of each eigenvalue to the smallest eigenvalue 

of X) 1, the variance inflation factor (VIF) and its generalised version (gVIF: Fox and Monette 

1992), and the variance decomposition proportions (VD, which gives more specific 210 

information on the eigenvectors’ contribution to collinearity: Belsley, et al. 1980, Brauner and 

Shacham 1998). While these methods calculate one value per variable pair (with the 

exception of the VD where the number of calculated values equals the square of the number 

of variables), there are also approaches that estimate a single value to describe the degree of 

collinearity in the full dataset (“variable set indices”). Most commonly used are the 215 

determinant of the correlation matrix (det(R)) and the condition number (CN, the square root 

of the ratio of the largest and the smallest eigenvalue of X). Code for all of these is supplied in 

the Supplementary material Appendix 2. 

 The most useful class of indices depends on the complexity of the dataset. Variable-set 

indices are preferable when quickly checking for collinearity in datasets with large numbers 220 

                                                

1 There is some confusion in the literature regarding the terms condition index and the condition number. 

Sometimes, the condition index is defined as the ratio of the largest to the smallest eigenvalue instead of the 

condition number. We follow here the definitions given by Rawlings, J. O., Pantula, Sastry G., Dickey, David A. 

1998. Applied Regression Analysis: A Research Tool - Springer..  
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of explanatory variables. Per-variable-indices give a more detailed picture of the number of 

variables involved and the degree of collinearity. Sometimes the per-variable-indices may 

indicate collinearity although the variable-set indices miss it.  

2. Removing collinearity prior to analysis 

The first assemblage of collinearity methods, and also the largest, comprises approaches that 225 

remove collinearity from the variable set or modify the variables set such that collinearity is 

removed before the analysis. This assemblage divides into two groups, which differ rather 

fundamentally in their approach. The first group of pre-analysis clean-up methods identifies 

which variables are clustering together and thus form a proxy-set (section 2.1). Once a cluster 

is identified, several ways to proceed are possible, and they are discussed below (section 2.2). 230 

The second group does not go through clusters to arrive at new data sets (section 2.3), but 

uses a variety of other methods to get from the collinear input to the non-collinear output data. 

Several of the methods presented below use correlation as an indicator for collinearity. We 

note that correlation and collinearity are not the same: collinearity means linearly related, 

whereas data with varying amounts of linear relatedness can have the same correlation 235 

coefficient. Nevertheless, high absolute correlation coefficients usually indicated high linear 

relatedness. 

2.1 Identify clusters/proxy sets 

There exist numerous methods to cluster variables, from which we selected the most common 

ones. At this point a conceptual decision arises: whether the response variable (y) should be 240 

used when identifying clusters. Harrell (2001) argues that the response should be ignored, 

because the clusters represent the grouping of explanatory variables in relation to themselves, 

not grouping of variables in their relation to the response. In the following we will explicitly 

mention whenever y is used as input.  
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Principal component analysis (PCA) is one of the most common ways to remove 245 

correlations in a variable set and to reduce collinearity (as correlation may serve as an 

indicator of collinearity). It can only be applied to continuous variables, though there are 

closely related ordination methods such as correspondence analysis that can deal with other 

kinds of variables. PCA produces orthogonal (i.e. perfectly uncorrelated) axes as output, so 

without clustering, the PC-axes may be used directly in subsequent analyses in place of the 250 

original variables. We discuss this approach later in the section “Latent variable modelling”. 

To use PCA for clustering, the PCA should be applied to the correlation matrix (rather than 

the covariance matrix, which is distorted by the different scale of variables). Methods exist for 

applying clustering directly to the components or to rotations of them (Booth, et al. 1994). We 

only used the direct approach, as described in detail in the Supplementary material Appendix 255 

1.1. The general idea is to work progressively through the PCA axes, study the loadings of the 

variables onto the axes, and identify groupings. Variables with absolute loadings larger than 

0.32 form the “proxy groups” or clusters of interest (Booth, et al. 1994). The value 0.32 is 

chosen because it represents 10% of the variance for the variable being explained by the PC-

axes (Tabachnick and Fidell 1989). Note that PCA is sensitive to outliers (extreme values), 260 

transformations, missing data and assumes multi-normal distributions. In practice, the 

technique is relatively robust when used for description (as opposed to hypothesis testing) so 

long as the data are continuous, not strongly skewed and without too many outliers. Other 

ordination techniques (PCoA, nMDS, (D)CA) can be employed analogously and may be more 

suitable for any given data. K-means clustering is equivalent to PCA-based clustering (Ding 265 

and He 2004, Zha, et al. 2001). 

Cluster analysis is the partitioning of a set of explanatory variables into subsets, i.e. 

clusters are based on distance between variables (Jain et al. 1999). Clustering can be 

performed bottom-up (agglomerative) or top-down (divisive). Unfortunately the results 

depend strongly on which of the many clustering algorithms and which of the many distance-270 
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metrics are used (Lebart et al. 1995). The most commonly recommended ones are Ward-

clustering based on the correlation matrix or a Hoeffding-clustering (Harrell 2001, Lebart et 

al. 1995), but new methods such as self-organising maps (Kohonen 2001) and other machine-

learning algorithms may be superior (Hastie et al. 2009). Because hierarchical cluster analysis 

provides a full cluster tree, a distance-threshold has to be specified to form the actual clusters. 275 

Iterative variance inflation factor analysis (iVIF) is a method based on the 

quantification of collinearity by VIF (Booth et al. 1994). VIFs are the diagonal elements of 

the inverse of the correlation matrix. Iterative VIF analysis works, essentially, by comparing 

the VIF values of a set of predictor variables with and without an additional explanatory 

variable. All the variables that show an increase of the VIF value above a certain threshold are 280 

grouped with the newly added variable into one cluster (proxy-set in the terms of Booth et al. 

1994). The iterative formula guarantees that all variable combinations are tested. The method 

identifies different groups compared with a classification based on pairwise VIF values 

because it also considers the VIF of groups of more than two variables. 

2.2 Dealing with clusters 285 

Once clusters are identified there are several ways to handle them, the three most common 

being: 1) perform a PCA based on variables in the cluster and use the principal components 

(PCs); 2) represent the cluster by the variable closest to the cluster centroid; or 3) represent 

the cluster by the variables with highest univariate predictive value for the response.  

 PCA on cluster variables is the most common way to create “cluster scores” (Harrell 290 

2001). As long as all principal components are used in the subsequent regression, the analysis 

will be unbiased (Frank Harrell, pers. comm. in R-help). Where subsets of PCs are chosen, the 

resulting bias may be tolerable if the selected axes explain most of the cluster inertia. The 

advantage is that this approach based on composite-axis-score integrates all variables of the 

cluster, but the disadvantage is that PCs will often be difficult to interpret. 295 
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 Selecting a “central” variable from the cluster overcomes the interpretation problems, 

but inevitably introduces a bias by omitting certain variables (Fraley and Raftery 1998). The 

variables closest (e.g. in terms of Euclidean distance) to the multidimensional cluster centre is 

an obvious candidate. 

 Using the “best regressor” from the variables in a cluster has the disadvantage of using 300 

the response to determine which variables are selected. This circularity of using y in the 

analysis may inflate type I errors (Harrell 2001). However, since an exploratory data analysis 

commonly precedes the analysis anyway, the best-regressor-approach (“data snooping”) may 

not distort the analysis too badly compared to completely ignoring collinearity. 

Note that although some methods may seem more appropriate because they use 305 

“interpretable” variables rather than composite-axis-scores, this is deceptive: in whichever 

way we represent a cluster, the variable used represents all other variables of the cluster and 

should not be interpreted only at face value. Renaming the retained variable to reflect its 

multiple identities is a sensible precaution. 

2.3 Cluster-independent methods 310 

Two main options exist to bypass the identification of clusters and either directly use the 

collinear input variables during the analysis or to produce a less collinear set of predictors. 

 Select variables correlated |r|<0.7 is the most commonly applied method across 

different fields of science, albeit with various thresholds. This only has an unambiguous 

interpretation when a clear difference in ecological importance exists between correlated 315 

variables. Where this is not the case, nonlinear univariate pre-scans of each variable (“data 

snooping”) can be used to determine the sequence of importance (see Murray and Conner 

2009, for a review of methods using only linear approaches). Although a threshold of 0.7 is 

the most common, also more restrictive (e.g. 0.4 in Suzuki et al. 2008) and less restrictive 

(0.85 in Elith et al. 2006) thresholds have been used.  320 
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 Sequential regression (Graham 2003) aims to create new purged explanatory 

variables by reciprocally subtracting the common variation from the less important variables. 

It linearly regresses explanatory variables against each other and uses the residuals to 

represent them. Note that while this approach is sometimes also called “residual regression” 

(Graham 2003), it is fundamentally different from the rightly criticised approach of 325 

“regression of residuals” (Freckleton 2002). In sequential regression the predictors are 

regressed, while in “regression of residuals” the residuals of the independent variable are used 

in a second-step regression. In practice, sequential regression comprises the following two 

steps: 1. Identify a sequence of importance for the explanatory variables. Preferably, this 

should be done through ecological reasoning. If the data are ecologically indistinguishable 330 

(e.g. concentration of trace minerals in the soil), nonlinear univariate regressions on the 

response variable can be used to determine the order of importance. 2. Calculate the 

independent contribution of each explanatory variable. The first (most important) variable 

will remain as it is. The second variable will be regressed against the first, and the residuals of 

this regression represent the independent contribution of the second variable after accounting 335 

for the effect of the first. The third variable will now be regressed against the first and the 

residuals of the second, and so forth. The resulting variables are orthogonal, but conditional. 

They cannot be interpreted without the previous variables. Also a standard stepwise model 

simplification cannot be used, because after removing a variable, all variables of lower 

importance have to be re-calculated. The interpretation of variables changes from “there is a 340 

positive effect of precipitation” to “there is a precipitation effect additional to the contribution 

it already made through its relationship with temperature”. Conceptually, sequential 

regression is related to semi-partial correlation analysis (Bortz 1993) and path analysis, 

methods where variables can act through their relationships with other variables (Grace 

2006). 345 
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3. Modelling with latent variables 

Some methods are designed to incorporate collinear variables. The methods described in this 

section deal with collinearity by constructing so-called “latent” variables, i.e. unobserved 

variables which underlie the observed collinear variables. As a result of the methods used, 

most variance in the observed explanatory variables is concentrated in the first few new latent 350 

variables and usually the less important latent variables are discarded, leading to a reduction 

in dimensions. Methods differ in how the latent variables are derived, whether the response 

variable is included in this derivation and how many latent variables are extracted. 

 Principal component regression (PCR) simply uses the PCs as explanatory variables 

and is restricted to linear fits to those variables. Often only those PCs are used that 355 

cumulatively explain over 90% of the variance. Then a stepwise procedure simplifies the 

model further. Ridge principal component regression (Vigneau, et al. 1997) is a special case 

of PCR, where the PCs are not used in an ordinary regression model, but in a penalised 

regression model. For details on penalisation see section “Tolerant methods” below. 

Partial Least Squares (PLS) iteratively modifies the loadings of the explanatory 360 

variables on a PCA in order to maximise the fit of the PCA regression onto the response 

variable y (Abdi 2003). It thus keeps the PLS-axes orthogonal, but they no longer represent 

maximum variance in X. The intention of this approach is that the chosen latent variables are 

relevant not only for X, but also for y, though Hastie et al. (2009) show that the variance in X 

still tends to dominate.  365 

 In ordinary PLS, rotations of principal components are fitted to the response variable. 

By changing the rotation in an iterative procedure, the best linear fit to the response is found. 

Penalised Partial Least Squares uses a non-linear fit, based on splines, to find the best 

rotation and hence best PLS-components (Krämer et al. 2007). PPLS can hence be seen as a 

combination of PLS and Generalised Additive Models (GAMs). However, GAMs are very 370 
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flexible models, which may overfit the data considerably (i.e. have high performance on 

training data, but low on test data). To overcome this problem, parameters are penalised, 

leading to a more robust model. This process is also discussed in the statistical literature as 

shrinkage or regularisation (Harrell 2001, Reineking and Schröder 2006). For more details on 

penalisation refer to the section “Tolerant methods” below. 375 

 Constrained Principal Component Analysis (CPCA: Vigneau, et al. 2002) works in 

a similar way to PLS, but is not iterative. To find the best rotation of X it requires the 

estimation of a tuning parameter, which balances fit to y against PCA-like maximisation of 

variance on consecutive axes (see Supplementary material Appendix 1.1 for details). Thus, 

while a PCA aims to represent variation in X with as few principal components as possible 380 

and PLS focuses on the fitting of y, CPCA balances these two objectives. 

 In latent root regression (Gunst et al. 1976; Webster et al. 1974) the response 

variable is included in a PCA with the predictors. This identifies important PCA-axes as those 

with a high loading of y. A possibility for selection of axes is to define certain thresholds for 

the eigenvalues and the loadings of y (Vigneau et al. 1996). Then the PCA is re-run, but only 385 

on the selected variables, deleting “the non-predictive collinearity” (Gunst et al. 1976). Citing 

Joliffe (2002, p. 180): “Thus, latent root regression deletes those PCs which indicate multi-

collinearities, but only if the multi-collinearity appears to be useless for predicting y.” 

Hawkins (1973) and Hawkins & Eplett (1982) keep the response variable when re-calculating 

the PCA, which we regard as incorrect. The decision about which eigenvalues count as large 390 

enough to retain their high-loading variables is somewhat arbitrary (Gunst and Mason 1980). 

A more elegant approach, in which linear combinations of predictors are formed sequentially 

and related to the dependent variable to determine their relevance for predictions, was 

introduced by Vigneau et al. (2002). The advantage and disadvantage of LRR is nicely 

described by Guerard & Vaught (1989, p. 349): “Latent root regression adds a biased term 395 

while eliminating the ill-conditioning. […] the bias term is small and the mean square error of 
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the latent root regression estimator is less than the mean square error of the ordinary least 

square estimator. Thus, LRR is preferred to OLS [ordinary least squares] analysis as long as 

the parameter vector is not parallel to the latent vector corresponding to the smallest latent 

root of the correlation matrix.” 400 

Dimension reduction (DR) is related, structurally, to factor analysis since it also 

produces new, orthogonal axes and tests for the number of dimensions required to represent 

the data set. However, DR also uses the response variable to do so. There are different DR-

techniques: sliced-inverse regression (SIR: Li 1991), sliced average variance estimation 

(SAVE: Cook and Weisberg 1991), principal Hessian directions (PHD: Li 1992) and inverse 405 

regression estimation (IRE: Wen and Cook 2007). According to Weisberg (2008), the first 

three of these methods examine the inverse regression problem of X | y, rather than the 

forward regression problem of y | X. A major benefit of DR over the other latent variable 

approaches is that categorical variables can be analysed too. Axes loadings can be used in the 

same way as for PCA to construct clusters. 410 

4. Tolerant methods 

Some regression techniques may be more sensitive to collinearity than others. Recent 

developments in model selection methods have introduced new methods for balancing model 

complexity and fit. Although not necessarily designed to be tolerant of collinearity, they offer 

approaches that may be less sensitive. The approaches listed here fall into four different 415 

groups.  

 Penalised regressions account both for the number of parameters p in a model and 

their absolute estimates β: ∑
=

=
p

j
j

1
complexity model

λ
β . The degree of penalisation differs 

between approaches: In ridge regression λ=2 (also called “L2-norm”: Hoerl and Kennard 

1970), in LASSO regression λ=1 (“L1-norm”: Tibshirani 1996) and in OSCAR (see below) λ 420 
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is optimised using the L1-norm together with the pairwise L∞-norm (Bondell and Reich 

2007). The combination of L1 and L2 norms is called the elastic net (Zou and Hastie 2005) 

and is similar to OSCAR (Bondell and Reich 2007). Depending on the form of the penalty, 

the regression coefficients are shrunk and/or selected. While all methods mentioned lead to 

shrinkage of the regression coefficients towards zero, ridge regression performs neither 425 

selection nor grouping, while LASSO selects but does not group parameters. Shrinkage of the 

coefficients towards zero leads to an estimation bias, but also to a smaller prediction error due 

to decreased variance (Hastie, et al. 2009). 

Octagonal shrinkage for clustering and regression (OSCAR) provides the user 

with clusters based on a regression of all variables against the response (Bondell and Reich 430 

2007). Because both response and explanatory variables are standardised before the analysis, 

only normally distributed responses and continuous explanatory variables can be employed. 

OSCAR requires specification of two control parameters (the penalisation of the L1 norm and 

the penalization of the pair-wise L∞ norm), which should be optimised, making OSCAR a 

rather computer-intensive method. 435 

 Machine-learning methods are a vibrant area of research in ecology (Elith, et al. 

2006, Hastie, et al. 2009), and we only present four methods, chosen for their interest to 

ecologists. Our machine-learning methods are build around Classification and Regression 

trees (Boosted Regression Trees, BRT: Friedman et al. 2000, and randomForest: Breiman 

2001) or very flexible, high-order, multidimensional polynomials or splines (Support Vector 440 

Machines, SVM: Fan et al. 2005, and Multivariate Adaptive Regression Splines, MARS: 

Friedman 1991). Details of these methods can be found in the Supplementary material 

Appendix 1.1.  

Collinearity-weighted regression (CWR) is a new idea developed during this study 

by CFD, TM and BR. The method down-weights those data points that most strongly 445 

contribute to the collinearity pattern in the regression of the response variable against the 
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explanatory variables (X). This is likely to be most useful in situations where outliers are 

incidental and (partly) responsible for strong collinearity. 

Part IV: Comparison of methods on simulated data 

To compare methods for dealing with collinearity, we simulated data sets with a range of 450 

predictor collinearity and with five different functional relationships between the response, y, 

and the (collinear) predictors, X. We then explored the predictive performance of the methods 

on test data sets with five different collinearity structures. In the following sections we 

describe our simulation and analysis. Further details can be found in Supplementary material 

Appendix 1.2. 455 

Data simulation 

For our simulation experiment, we created training and test data sets that had 1000 cases and 

21 explanatory variables (predictors). These were grouped into four clusters (A-D) of five 

variables each plus a single uncorrelated variable. Collinearity was restricted to within 

clusters, imitating collinearity among climatic variables, among land-cover variables and so 460 

forth. The parameter “decay” controlled the degree of collinearity with high values of “decay” 

meaning low collinearity (for details on data simulation see Supporting material Appendix 

1.2). The 21st predictor was always created as uncorrelated with all others. All X were then 

standardised. 

 For all training and test data sets, the response variable was calculated as a function of 465 

predictors X plus random normal noise (sd = 0.5). We simulated five different relationships of 

increasing complexity: 

1. f1 = 25+XAi, i.e. one linear predictor from cluster A; 

2. f2 = 25+XAi+XAj+XBk+XBl+XCm+X21, i.e. many linear, of which some are collinear 

(XAi and XAj, XBk and XBl); 470 
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3. f3 = 25+XAi–XAi
2+XBj–XBj

2+XCk–XCk
2, i.e. three non-linear (quadratic), without 

collinearity between any of the variables; 

4. f4 = 25+XAi+X21+XAiX21, i.e. two interacting but uncorrelated predictors; 

5. f5 = 25+XAi+XAi
2 +X21+X21

2+XAiX21, i.e. two non-linear predictors without 

collinearity, plus an interaction between their linear terms. 475 

In the above formulation, X1 to X5 belong to cluster A, X6 to X10 to B, X11 to X15 to C and X16 

to X20 to D. Values of i, j, k, l, m are randomly drawn, because cluster analysis often identified 

the alphanumerically first variable as representative of a cluster, thereby biasing the results. 

For each of the five functional relationships, we created training datasets with varying 

degrees of collinearity within clusters by choosing eight different levels for “decay” (0.002, 480 

0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5). Then, we produced five different test data sets for 

each training data set to mimic changes in collinearity structure that may occur through time 

and space. In “test same” the same collinearity structure as in the training data was used (i.e. 

the data generation algorithm was identical to the training data but with different random 

seeds). In “test more” and “test less” the decay was half and twice that of the training data, 485 

respectively, simulating an increase or decrease in the collinearity of the predictors. The 

fourth test set, “test non-linear”, simulated a non-linear change in the collinearity structure, 

where only high values of the two variables become less collinear (see code in Supplementary 

material Appendix 1.2 for details). Finally, “test none” was generated as 21 completely 

independent predictors with mean = 0 and standard deviation = 1.  490 

Each of the five functional relationships was simulated for each of the eight levels of 

within-cluster collinearity, yielding 40 different sets. These were replicated 100 times to 

provide a total of 4000 data sets of different collinearity and y-X-complexity. Seeds for the 

random number generator were used to allow full reproducibility of these data. Data 

generation code is available, together with implementation code for all methods, in 495 

Supplementary material Appendix 2. 
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Simulation analysis 

First, collinearity diagnostics were computed for all 4000 data sets: the determinant of the 

correlation matrix, κ, the condition number, minimum, mean and maximum eigenvalue of the 

correlation matrix, number of proxy sets (sensu Booth et al. 1994) and number of large 500 

variance inflation factors (see section Diagnostics and Table 1 for details, and Supplementary 

material Appendix 2 for code). Then, we analysed each data set with all collinearity methods. 

Since some methods have multiple options, a total of 55 different approaches were employed 

(see Supplementary material Appendix 1.1, Table A1, and example analysis therein). 

 For each model, we predicted the response ( ŷ ) for all test data sets, and compared this 505 

with the “true” y-values. Model quality was assessed as Pearson’s coefficient of 

determination (R2), Root Mean Squared Error ( RMSE =
(y− ŷ)2∑
n

), slope and intercept of 

the calibration curve (regression of true vs. predicted values). Distributions of R2, slope and 

intercepts were heavily skewed by extreme outliers. Hence we report RMSE-values here, 

which appear to be less sensitive in this context. Qualitatively, R2, slope and intercept yield 510 

the same results (see Supplementary material Appendix 1.2). 

Finally, we explored the detail of the effects of collinearity on model selection by 

targeting two of the simulated data sets. We also ran two case studies with real data 

(distributions of black grouse in Europe, and drivers of global bird diversity) to illustrate the 

effects of collinearity on model selection across methods. These are presented in 515 

Supplementary Material Appendix 1.2. 

Results 

In total, 4000 data sets, analysed by 23 different methods were produced. We carried out two 

pre-analyses on all data sets. The first compared model selection procedures based on the 

small sample-size corrected Akaike’s Information Criterion (AICc) and Bayesian Information 520 
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Criterion (BICc); the second compared three different ways to represent clusters (see 

Supplementary material Appendix 1.2 for details). Based on the results we represented a 

cluster by its central variable, and kept all four clustering methods. We used BICc-derived 

models except for CPCA, PLS and PPLS. As references we used three models: firstly, a 

correctly specified linear model (i.e. a GLM with Gaussian errors, from here on referred to as 525 

GLM), where we only estimated the parameters (ML true); secondly a backward stepwise 

simplified GLM (starting with linear and quadratic terms and first-order interactions for all 21 

predictors and BICc setting); and, thirdly, a GAM with cubic splines and shrinkage (i.e. 

reduction in spline flexibility Wood 2006) applied to all predictors (see Fig. 6 for all methods 

remaining). 530 

Model validation under collinearity 

In the analysis, we focussed on three aspects affecting the performance of a method, as 

assessed by the Root Mean Squared Error (RMSE) on different test data: 1. degree of 

collinearity present in the data (X-axis in Fig. 4 and 6); 2. complexity of the functional 

relationship used for simulation (five subfigures of Fig. 6); and 3. change in collinearity 535 

structure from training to test data set (five line types within each panel in Fig. 6). As absolute 

reference, we used the RMSE of a correctly specified model (first panel with formula for 

simulation; here all error is due to the noise imposed in the simulations). 

 Summarised across all functional relationships and model types, we did not detect a 

trend of degeneration of model fit on the test-same, test-more or test-less data with increasing 540 

collinearity (Fig. 4). When the collinearity structure changed non-linearly or was completely 

lost, however, model fit decreased substantially and became much more variable as 

collinearity increased (test non-linear and test none, Fig. 4). 

 As a first rough guide on which statistical approaches worked best, we analysed the 

shortlisted 23 methods plus the reference ‘ML true’ across all functional relationships (Fig. 545 
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5). When evaluated using the test data with the same collinearity structure, most methods 

performed very well in terms of RMSE. A moderate loss of performance was observed for 

PPLS, PCA-based clustering and BRT when the collinearity structure changed slightly (test-

less). This trend was aggravated under non-linear changes of collinearity, where also 

variability started to substantially increase for several methods (among them GLM and 550 

several latent variable approaches). Using the test data without collinearity (test none), 

however, the verdict came clearly in favour of the select07/04 methods, ridge, lasso, DR, 

GAM and MARS. Other methods were also similar in their median performance but exhibited 

much larger variability (GLM, seqreg, machine learning methods). Neither latent variables 

(except DR) nor clustering approaches could compete. This may differ between functional 555 

relationships, so we subsequently analysed this in more detail. 

Fig. 6 shows the effect of increasing collinearity on prediction accuracy (in terms of 

RMSE) of all models on the different test data sets. We found that collinearity affects model 

performance negatively for most methods and functional relationships (increasing RMSE 

towards the right in the panels of Fig. 6). Collinearity effects were generally non-linear, and 560 

almost all methods proved tolerant under weak collinearity (CN below 10). A threshold of CN 

= 30 (indicated in Fig. 6) was clearly too high for most methods analysed here. Notable 

exceptions from this pattern are PCA-based clustering and SVM, which increased in 

performance with collinearity (albeit PCA-based clustering starting from a very poor fit). 

 The results across all collinearity test structures are complex (Fig. 6). They can be first 565 

summarised by looking for a general pattern of low and consistent RMSE across all condition 

numbers, excluding the hardest case that of prediction to completely changed collinearity (the 

long dashed line). Consistently well-performing methods include select04/07, GAM, ridge, 

lasso, MARS and DR. Some other methods were consistent, but at a higher RMSE level 

(Hoeffding/Ward & Spearman/average clustering, seqreg, LRR, OSCAR, randomForest, BRT 570 

and SVM). 
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  When investigating, by eye, the performance under severe collinearity (i.e. to the right 

of the CI=30 line), we found most methods outperformed GLM-like approaches. In particular 

clustering, penalised and machine-learning approaches yielded lower-error models. However, 

several of the purpose-built latent variable techniques were only marginally better than GLM, 575 

delaying the degeneration of model performance from a condition number of 10 (for GLM) to 

30 (LRR, DR, CPCA, PLS, PPLS). Two other noteworthy results are that the GAM also did 

well at high collinearity, while the commonly used Principal Component Regression showed 

no improvement on the GLM. 

 The performance of methods changed only slightly across levels of functional 580 

complexity (Fig. 6). Trends became more pronounced as the underlying functions became 

non-linear, and at a level of functional complexity that might be typical for an ecological 

regression model (two quadratic terms and an interaction), clustering methods in particular 

suffered from poor model fits. Also three of the four penalised approaches were unable to 

regularise the model sufficiently and thus only the ridge was still performing very well. 585 

 The most striking pattern we observed was the performance under changing 

collinearity structure. Since we generally have little idea of how environmental variables are 

correlated over time or space, this will not help us decide which method to use. Generally, 

few of the methods were able to correctly predict under the most difficult combination of high 

collinearity in training data and complete loss of the collinearity structure in the test data (as 590 

reported in the right tail of the long dashed lines in Fig. 6). Methods where the RMSE for this 

combination stayed lowest were select04/07, ridge and MARS, with GAM, randomForest, 

BRT, SVM, lasso and OSCAR working fine up to a condition number of approximately 150-

200 (2.2 on the log-scale of Fig. 6). 

 Some methods deserve specific comment. The PCA-based clustering was useful only 595 

under highest collinearity. Under normal circumstances, using the most central variable in a 

cluster is likely to mislead variable identification. However, using the principal component of 
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each cluster was even worse (see Supplementary material Appendix 1.2, Fig. A3). Select04 

and select07 were yielding nearly identical results in all runs. This is probably due to the way 

we generated our data, where correlations within a cluster are very high, and both thresholds 600 

(|r| = 0.4 and |r| = 0.7) hence led to near-identical selection of predictors. Ridge penalisation 

failed to converge for the quadratic model (function 3) without collinearity (see also Tips and 

Tricks in the Discussion). PPLS was the most unreliable approach, despite combining the 

strengths of PLS, GAM and penalisation. Finally, CWR yielded very similar results to the 

GLM, only slightly outperforming GLMs under high collinearity. Again, this is probably due 605 

to the way we generated our data as collinearity between variables was modelled as intrinsic 

and not incidental due to outliers which is the main (proposed) application domain of CWR.  

 For each group of approaches, our simulations suggest the following most promising 

methods: from the control group, GAM; from clustering, Hoeffding/Ward or 

Spearman/average; from the latent variable approaches, DR; from the penalised approaches, 610 

ridge; and from the machine learning group: MARS, randomForest and BRT. 

Part V. Discussion 

Collinearity cannot be “solved” if we have no additional information. If two highly collinear 

predictors X1 and X2 are correlated with Y, then there is no logical way to glean information 

about which of the two is “really” behind the correlation. The problem collinearity poses is 615 

thus similar to the fact that correlation is not causation: when one variable (or more) is 

correlated with a response then there need not be any causal relationship between them. This 

is also the general philosophy behind the latent variable approach. Here one assumes that all 

variables measured are reflections or proxies for an underlying “true”, but unobserved and 

possibly unobservable, variable. Our review and comparison of methods therefore cannot find 620 

a solution to the problem of collinearity, because without additional information the truth 

cannot be extracted (see similar conclusions in Kiers and Smilde 2007). Still, there are 
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modelling approaches that are more sensitive to collinearity than others. The aim of this study 

was to evaluate which methods can be relied on most if no additional information is available. 

 Our analysis is but one in a list of studies comparing different approaches to 625 

collinearity (Aucott, et al. 2000, Graham 2003, Kiers and Smilde 2007, Morlini 2006, Smith, 

et al. 2009), albeit the most extensive. In particular, our study is, to our knowledge, the only 

one where non-linear and interacting effects are used in data simulation, which is vitally 

important for ecological data. 

General comments 630 

The methods compared vary widely in their ecological interpretability. Latent variable 

methods (including PCA and PLS) leave the analyst to interpret correlation over several 

variables. These methods provide no guidance about which of the highly correlated variables 

may actually be the best candidate for an underlying causal relationship. This, however, can 

also be seen as a virtue. GLM, GAM, CWR, select07/04 and sequential regression all identify 635 

a reduced set of predictors, but their statistical support may only be marginally better than that 

of those variables collinear with them but omitted during the analysis. Therefore, there exists 

a high risk of over-interpreting fitted models and relative variable importance and the 

(relative) simplicity of these analyses is thus paid for by a higher risk of failing to identify an 

important variable (type II error). If collinearity is incidental, a second, independent data set is 640 

likely to have a different collinearity structure and may assist ecological interpretation. 

 Another aspect of interpretability is the meaning of the derived variables. In 

sequential regression, a predictor could be the residuals of three or more consecutive 

regressions. Interpreting this effect requires careful wording and head-scratching, for 

example: “There was an additional effect of slope after accounting for slope-related 645 

variability in temperature, precipitation and altitude.” While this may sound convoluted, it is 

actually much closer to our intuitive understanding than the variable “slope” itself. When we 
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note “slope” by itself to be significant, we should really only mean the slope, and not the fact 

that sloped sites are drier or higher up in the mountains. So, sequential regression may 

sometimes be easier to interpret than its iterative derivation would suggest. Since sequential 650 

regression also fares rather well in our comparison, we recommend it as one of the methods 

worthy of further exploration. 

Simulations and case studies 

From our simulation study we drew four main conclusions: 

1. When the correct form of the functional relationship is known, collinearity does not 655 

harm the fitting and therefore prediction to changing collinearity structures. In Fig. 6, 

the true model (top left) always yielded a near-perfect fit. This is why mechanistic 

modellers try to build their models from ecophysiological or population biological 

principles (see, e.g., Kearney and Porter 2008). Whenever unique model structure is 

not given, collinearity is likely to bias estimates. 660 

2. The simple and common strategy to use the better univariate predictor of a set of 

two collinear variables (select07 and select04) fared surprisingly well (in line with 

Smith, et al. 2009). It may well be that this can be attributed, in part, to the design of 

our simulations, where within each cluster only one variable was causally linked to the 

response (except for function number 2). 665 

3. Most collinearity approaches worked reasonably well under moderate collinearity 

(i.e. condition number < 10): GLM, GAM, sequential regression, most latent variable 

methods (PCR, LRR, DR, CPCA, PLS), LASSO, PPLS and machine-learning 

methods (randomForest, BRT and MARS). Only a few methods failed even under 

mild collinearity: PCA-based clustering, PPLS and SVM (see section “Tips and 670 

tricks” for hints why that may be). 
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4. Under severe collinearity (condition number > 30), changes in collinearity structure 

(different line types in Fig. 6) were even more worrisome than effects of collinearity 

per se. In particular, non-linear changes in collinearity (where high correlation 

changed more than low ones) and the complete loss of any collinearity proved 675 

detrimental for most methods. Even methods that worked nicely under similar 

collinearity structure (e.g. seqreg, clustering or the latent variable methods) broke 

down, indicating that in fact the right predictors or correct parameter estimates were 

not identified by the models.  

Our case studies (Supplementary material Appendix 1.2) covered additional issues of whether 680 

correct predictors were selected, and investigated performance under small sample size, 

extremely heterogeneous collinearity, categorical variables, non-normal response variables, 

and highly-skewed predictors. The results varied with the study, from consistency across 

several methods in selection of particular variables, to apparently random selection of one 

variable or another, to selection of all variables and giving small importance to each. For the 685 

real data, we do not know the truth, but the results are interesting as demonstrations of the 

tendencies of different methods.  

Caveats 

Our analysis cannot be comprehensive. Although it is the most extensive comparison of 

methods, and contains a large set of varying functional relationships, collinearity levels and 690 

test data sets, there will always be cases that fundamentally differ from our simulations. 

During the selection of case studies we noted in particular two situations we did not consider 

in the simulations: small data sets and collinearity that did not occur in clusters. Additionally, 

we shall briefly discuss some other points which are relevant for generalisations from our 

findings. 695 
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 Small data sets (where the number of data points is in the same order as the number of 

predictors) generally do not allow the inclusion of all predictors in the analysis. An ecology-

driven pre-selection for importance may reduce or increase collinearity. If we apply univariate 

(possibly non-linear) pre-scans or machine-learning-based pre-selection, we confound 

collinearity with variable selection. We chose to exclude these examples from this study to 700 

avoid confusion of these two topics, although they clearly are related. Selecting the correct 

variable to retain in a model is more error-prone under collinearity (Faraway 2005), and the 

resulting reduced data set will also be biased (see Elith et al. (2010) and Synes & Osborne 

(2011), for more details). 

 In our simulations, we grouped the 21 predictors into four clusters of five variables 705 

each, and a separate, uncorrelated variable. Within-cluster collinearity was usually much 

higher than between-cluster collinearity. This led to a bimodal distribution of correlation 

coefficients (with a low and a high peak). In contrast, in our real-world examples (Appendix 

2), the distribution of correlation coefficients was unimodal, with only very few high 

correlations and many low ones (|r| < 0.4). Separating variables into clusters is intrinsically 710 

less meaningful in such data sets. Similarly, latent variables have high loadings by many 

variables and are less interpretable. Finally, the lack of differences between select07 and 

select04 can be attributed to our grouping structure: if they were not correlated with |r| > 0.7, 

they were often also not correlated at |r| > 0.4. 

 All our predictors were continuous variables. Including categorical predictors would 715 

exclude several methods from our analysis (some of the clustering and most of the latent 

variable methods). Collinearity between categorical and continuous variables is very common 

(see e.g., Harrell (2001)’s example analysis of Titanic survivors, where large families were 

exclusively in class 3). We expect collinearity with categorical predictors to be similarly 

influential as with continuous variables. 720 
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 Our response variable was constructed with normally distributed error. Binary data 

(often for example used in species distribution modelling, e.g. case study 2 in Supplementary 

material Appendix 1.2) are intrinsically poorer in information and we would hence expect the 

errors in predictive performance for such simulations to be considerably higher. Still, the 

overall pattern of decreasing prediction accuracy with increasing collinearity should be 725 

similar. 

 We only investigated a single strength of the environment-response relationship. For 

much weaker determinants, results may well differ (see Kiers and Smilde 2007, for a study 

varying the noise level). Penalisation and variable selection would then cause an elimination 

of more predictors, and potentially suffer a higher loss of model performance than the other 730 

methods. Latent variable methods, on the other hand, may increase in relative performance, 

since they embrace all predictors without selecting among them. Similarly, machine-learning 

approaches could be better under these circumstances. 

Despite these caveats, our analysis confirmed several expectations and common practices. In 

particular, the rule-of-thumb not to use variables correlated at |r| > 0.7 (approximately 735 

equivalent to a condition number of 10) sits well with our results (at least for similar 

collinearity structures in the test data – i.e. the same, more and less scenarios). We have no 

evidence that latent variable methods are particularly useful in ecology for dealing with 

collinearity: they did not outperform the traditional GLM or select07 approach. And, finally, 

tree-based models are no more tolerant of collinearity than regression-based approaches 740 

(compare BRT or randomForest with ridge or GAM).  

 The choice of which method to use will obviously be determined by more than its 

ability to predict well under collinearity. From our analysis we conclude that methods 

specifically designed for collinearity are not per se superior to the traditional select07-

approach or machine-learning methods (in line with the findings of Kiers and Smilde 2007). 745 

In fact, latent variable methods are actually not any better but are more difficult to interpret, 
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since all variables are retained in the new latent variable. Penalised methods, in contrast, 

worked especially well (particularly ridge) and should possibly be more widely used in 

descriptive ecological studies.  

Tricks and tips 750 

In this section we briefly share our experience with some of the methods, particularly the 

choice of parameters. Please refer to the Supplementary material Appendix 1.1 for more 

detailed implementation information. 

 Clustering methods and latent variable approaches: Clustering is highly affected by 

pre-selection of variables. Omitting a variable may break a cluster in two, resulting in a very 755 

different cluster structure. Fewer variables generally mean better-defined clusters. A crucial 

point when using cluster-derived variables is to recognise that non-linear relationships will 

not be properly represented, unless the new, cluster-derived variables are also included as 

quadratic terms and interactions. In the ecological literature, PCA-regression, cluster-derived 

and latent variables are almost always only included as linear, additive elements. In a pilot 760 

analysis of the same data, this resulted in a near-complete failure of these methods. The new 

variables can best be thought of as alternative variables, and then processed as one would 

normally do in a GLM, with interactions and quadratic (or even higher-order) terms . 

Furthermore, latent variable approaches do not provide easily-extractable importance values 

for variables. 765 

 Choice of clustering method: We compared three different methods for processing 

clusters (Supplementary material Appendix 1.2 Fig. B3). While using univariate pre-scans 

was the best method, this has consequences with respect to the true error estimates. Because 

the response was used repeatedly, the errors given for the final model are incorrect and have 

to be replaced e.g. by bootstrapped errors (Harrell 2001). Therefore our choice and 770 

recommendation is to use the “central” variable from each cluster. 
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LASSO and ridge: In the implementation we used (see Supplementary material 

Appendix 1.1), interactions could not be included. For both approaches, we used a 

combination of L1- and L2-norm penalisation (as recommended by Goeman 2009). This 

requires that the optimum penalisation for the L2 and L1-norm (i.e. the penaliser not used by 775 

the method), respectively, must be sought before running the model. For example, when we 

run a LASSO (= L1-norm), we first find the optimum value of the L2-norm penalisation, and 

then run the LASSO itself. An alternative that allows simultaneous optimisation of L1- and 

L2-norm, called the elastic net (Zou and Hastie 2005), was slightly inferior to both methods, 

and much slower (data not shown), though we note that newer and reputedly faster versions 780 

have since been released (Friedman, et al. 2010). Both LASSO and ridge require fine-tuning 

in order to unfold their great potential. For our simulated data, this approach worked nicely. 

For the more data-limited case studies, manual fine-tuning of the penalisation values was 

required. 

RandomForest and Boosted Regression Trees (BRT): Both methods build on many 785 

regression trees, but use different approaches to develop and average trees (bagging vs. 

boosting). While the performance on test data was very similar, randomForest consistently 

over-fitted on training data. This means that the model fit on the training data was not a good 

indicator of its performance on the test data. When using either of the methods for projections 

to a scenario (where no validation is possible), both methods are likely to yield qualitatively 790 

similar predictions, but one might erroneously put more confidence in the (over-fitted) 

randomForest model. There is no obvious way to correct for this other than by (external) 

cross-validation.  

BRT and MARS were also found to benefit from a combination with PLS in the 

presence of collinearity (Deconinck, et al. 2008). In fact, MARS has been claimed to be 795 

sensitive to collinearity, but less so when combining it with PCA (De Veaux and Ungar 

1994). Whether this evidence is more than anecdotal remains to be seen (Morlini 2006). Our 
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simulations show MARS to perform very well and not to suffer from collinearity, although 

there is no guarantee that it selects the correct predictors and hence should be used with 

caution (Fig. B1). 800 

Final remarks 

Within the limits of our study, we derive the following recommendations: 

1. Because collinearity problems cannot be “solved”, interpretation of results must 

always be carried out with due caution. 

2. None of the purpose-built methods yielded much higher accuracies than those that 805 

“ignore” collinearity. We still regard their supplementary use as helpful for identifying 

the structure in the predictor data set. 

3. Select07/04 yields high accuracy results and identifies collinearity but use with 

consideration of the omitted variables – e.g., rename the retained variable to reflect its 

role as standing for two (or more) of the original variables. Because our study was 810 

simplistic with respect to the collinearity structure (four well-separated clusters of 

predictors), select07/04 may have profited unduly. Future studies should explore this 

further. 

4. Avoid making predictions to new collinearity structures in space and/or time, even 

under moderate changes in collinearity. In the absence of a strong mechanistic 815 

understanding, predictions to new collinearity structures have to be treated as 

unreliable. 

5. Given the problems in predicting to changed correlations, it is clearly necessary that 

collinearity should be assessed in both training and prediction data sets. We suggest to 

use pairwise diagnostic tools here (e.g. correlation matrix, VIF, cluster diagrams). 820 

Which method to choose is determined by more than each method’s ability to withstand 

collinearity. When using mixed models, for example in a nested design, several methods 
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(including most latent variable methods and some machine-learning ones) are inappropriate, 

because they do not allow for the specification of the correct model structure. Collinearity is 

but one of a list of things that analysts have to address (Harrell 2001, Zuur et al. 2009), albeit 825 

an important one. 

A number of research questions are unanswered and deserve further attention:  

1. How much change in correlation can be tolerated? Further research is necessary to 

define rules of thumb for when the collinearity structure has changed too much for 

reliable prediction, and how to define the extent and grain at which to assess 830 

collinearity. 

2. How to detect and address “non-linear” collinearity (concurvity): Collinearity 

describes the existence of linear dependence between explanatory variables. As such, 

Pearson’s r-correlation indices are usually used to indicate how collinear two variables 

are. Using a non-parametric measure of correlation, such as Spearman’s ρ or Kendall’s 835 

τ, will measure any monotonous relationships, but no approach for detecting and 

dealing with “concurvity” (Buja et al. 1989, Morlini 2006) more generally is currently 

available. 

3. Guidance on the relevance of asymmetric effects of positive and negative correlations: 

Mela & Kopalle (2002) report that different diagnostic tests for collinearity may yield 840 

different results. In particular, positive correlations between predictors tend to cause 

less bias than negative correlations. Additionally, the former may deflate variance, 

rather than inflate it. However, this issue apparently has not found its way into any 

relevant scientific paper in any discipline (perhaps with the sole exception of 

Echambadi et al. 2006), so it is difficult to judge its practical relevance. 845 

In conclusion, our analysis of a wide variety of methods used to address the issue of collinear 

predictors shows that simple methods, based on rules of thumb for critical levels of 

collinearity (e.g. select07), work just as well as built-for-purpose methods (such as penalised 
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models or latent variable approaches). Under very high collinearity, penalised methods are 

somewhat more robust, but here the issue of changes in collinearity structure also becomes 850 

graver. For predictions, our results indicate sensitivity to the way predictors correlate: small 

changes will affect predictions only moderately, but substantial changes lead to a dramatic 

loss of prediction accuracy. 
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Table 1. Collinearity diagnostics: indices and their critical values. 

Method 

 

Description threshold 

Absolute value of 

correlation 

coefficients (|r|)1 

If pairwise correlations exceed a threshold collinearity is high; 

Suggestion for thresholds: 0.5-0.7 

>0.7 

Determinant of 

correlation matrix 

(D) 

Product of the eigenvalue; If  D is close to 0 collinearity is high, if 

D is close to 1 there is no collinearity in the data 

NA 

Condition index 

(CI)2 

Measure of severity of multi-collinearity associated with jth 

eigenvalues; The CIs of a correlation matrix are the square-roots 

of the ratios of the largest eigenvalue divided by the one in focus; 

All CIs equal or larger than 30 (or between 10 and 100?) are 

‘large’ and critical 

>30 

Condition number 

(CN)  

Overall summary of multi-collinearity: highest condition index >30 

Kappa (K) Square of CN  5 

Variance-

decomposition 

proportions (VD)1, 4 

Variance proportions of ith variable attributable to the jth 

eigenvalue; no variable should attribute more than 0.5 to any one 

eigenvalue 

 

Variance inflation 

factor 

(VIF)4, 5 

1/(1–ri
2) with ri

2 the determination coefficient of the prediction of 

all other variables for the ith variable; Diagonal elements of R–1, 

with R–1 the inverse of the correlation matrix (VIF=1 if 

orthogonal); Values > 10 (ri
2>0.9) indicates variance over 10 times 

as large as case of orthogonal predictors 

>10 

Tolerance 1/VIF <0.1 

1: (Booth, et al. 1994); 2: (Belsley, et al. 1980, Douglass, et al. 2003, Johnston 1984); 4: (Belsley 

1991, p. 27-28); 5: (Hair, et al. 1995) 

1055 
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Figure captions 

Fig. 1. Changing collinearity structure of climate variables between eco-zones. Correlation 

matrix of the following six bioclimatic variables (www.worldclim.org): mean annual 

temperature, temperature seasonality (standard deviation), mean temperature of coldest 

quarter, annual precipitation, precipitation of driest month, precipitation seasonality 1060 

(coefficient of variation). The upper triangular part of the matrix shows Pearson correlation 

coefficients, while the lower part shows Spearman coefficients. The diagonal elements are 

one by definition and displayed in grey. 

 

Fig. 2. Correlations between environmental characteristics change with spatial resolution. 1065 

Moving window Pearson correlations between principal components 1 and 2 of a Landsat TM 

scene for southern Portugal (pixel size 100 x 100 m). Window size increases from 500 x 500 

m (top), through 1.1 x 1.1 km (middle) to 2.1 x 2.1 km (bottom). For the full image (i.e. a 

single window) the correlation is zero. 

 1070 

Fig. 3. Smoothed time-series of the correlation between mean daily temperature and 

precipitation for four US-American cities. Systematic seasonal variation was removed by 

Loess decomposition (contributing about twice as much as the long-term trend depicted here). 

Moving window width is 30 days (Data courtesy to Peter E. Thornton, Oak Ridge National 

Laboratories: http://www.daymet.org). 1075 

 

Fig. 4. Root Mean Square Errors across all simulations for the eight different levels of 

collinearity and using different collinearity structures for validation. Small linear changes, 

both increasing and decreasing absolute correlation (more/less), have little effect and are 

depicted together. Grey line indicates RMSE of the fit to the training data.  1080 
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Fig. 5. Root Mean Square Errors across all simulations for the different methods and using 

different collinearity structures for validation, sorted by median. Top: Same correlation 

structure, bottom: none. Grey lines refer to RMSE on training data. Note that sequence of 

models is different in each panel. Test data “more” was very similar to those of “less”, hence 1085 

only the latter is shown. 

 

Fig. 6. Relative prediction accuracy on test data for an ideal model (ML true) and 23 

collinearity methods as a function of collinearity in the data set. In each panel, solid/short-

hatched/dotted/dash-dotted/long-hatched locally-weighted smoothers (lowess) depict model 1090 

predictions on same/more/less/non-linear/no correlation data sets accordingly (not discernable 

in function 5 for select07 and select04 because they yield nearly identical values). X-axis is 

log(Condition Number), depicted logarithmically. That is, x-values are in fact double-log-ed 

CNs (one log for the fact that CN is a ratio, the second because we chose logarithmic scaling 

of collinearity decay rates when generating the data). Data are scaled relative to simulated 1095 

truth: an R2 of 1 indicates as perfect prediction as possible. Vertical line (at CN = 30) 

indicates the rule-of-thumb threshold for CN beyond data set collinearity is deemed 

problematic. 
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 1100 

Fig. 1. Changing collinearity structure of climate variables between eco-zones. Correlation 

matrix of the following six bioclimatic variables (www.worldclim.org): mean annual 

temperature, temperature seasonality (standard deviation), mean temperature of coldest 

quarter, annual precipitation, precipitation of driest month, precipitation seasonality 

(coefficient of variation). The upper triangular part of the matrix shows Pearson correlation 1105 

coefficients, while the lower part shows Spearman coefficients. The diagonal elements are 

one by definition and displayed in grey. 
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 1110 

Fig. 2. Correlations between environmental characteristics change with spatial resolution. 

Moving window Pearson correlations between principal components 1 and 2 of a Landsat TM 

scene for southern Portugal (pixel size 100 x 100 m). Window size increases from 500 x 500 

m (top), through 1.1 x 1.1 km (middle) to 2.1 x 2.1 km (bottom). For the full image (i.e. a 

single window) the correlation is zero. 1115 
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Fig. 3. Smoothed time-series of the correlation between mean daily temperature and 

precipitation for four US-American cities. Systematic seasonal variation was removed by 

Loess decomposition (contributing about twice as much as the long-term trend depicted here). 

Moving window width is 30 days (Data courtesy to Peter E. Thornton, Oak Ridge National 1120 

Laboratories: http://www.daymet.org). 
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Fig. 4. Root Mean Square Errors across all simulations for the eight different levels of 

collinearity and using different collinearity structures for validation. Small linear changes, 

both increasing and decreasing absolute correlation (more/less), have little effect and are 1125 

depicted together. Grey line indicates RMSE of the fit to the training data.  
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Fig. 5. Root Mean Square Errors across all simulations for the different methods and using 

different collinearity structures for validation, sorted by median. Top: Same correlation 

structure, bottom: none. Grey lines refer to RMSE on training data. Note that sequence of 

models is different in each panel. Test data “more” was very similar to those of “less”, hence 

only the latter is shown. 1135 
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Fig. 6 Relative prediction accuracy on test data for an ideal model (ML true) and 23 

collinearity methods as a function of collinearity in the data set. In each panel, solid/short-

hatched/dotted/dash-dotted/long-hatched locally-weighted smoothers (lowess) depict model 

predictions on same/more/less/non-linear/no correlation data sets accordingly (not discernable 

in function 5 for select07 and select04 because they yield nearly identical values). X-axis is 1145 

log(Condition Number), depicted logarithmically. That is, x-values are in fact double-log-ed 

CNs (one log for the fact that CN is a ratio, the second because we chose logarithmic scaling 

of collinearity decay rates when generating the data). Data are scaled relative to simulated 

truth: an R2 of 1 indicates as perfect prediction as possible. Vertical line (at CN = 30) 

indicates the rule-of-thumb threshold for CN beyond data set collinearity is deemed 1150 

problematic. 

 

 

 


